| DA.drop1 | R Documentation |
drop1 on all features from DAtest results with allResults = TRUEWorks on "zpo", "znb", "qpo", "neb", "poi". Non-paired "lrm", "llm", "llm2", "lma", "lmc"
DA.drop1(results, test = "Chisq", p.adj = "fdr", ...)
results |
Output from a |
test |
Which test to use to calculate p-values. See |
p.adj |
P-value adjustment method. See |
... |
Additional arguments for |
A data.frame with output from drop1 and adjusted p.values for each predictor and feature
# Creating random count_table, predictor, and covariate
set.seed(5)
mat <- matrix(rnbinom(1500, size = 0.5, mu = 500), nrow = 100, ncol = 15)
rownames(mat) <- 1:100
pred <- c(rep("A", 5), rep("B", 5), rep("C", 5))
covar <- rnorm(15)
# Running linear model and then drop1 on each feature
res <- DA.lmc(mat, pred, covars = list(Something = covar), allResults = TRUE)
res.drop <- DA.drop1(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.