| DA.wil | R Documentation |
Apply wilcoxon test for multiple features with one predictor
DA.wil(
data,
predictor,
paired = NULL,
relative = TRUE,
p.adj = "fdr",
testStat = function(case, control) { log2((mean(case) + 0.001)/(mean(control) +
0.001)) },
testStat.pair = function(case, control) { log2(mean((case + 0.001)/(control +
0.001))) },
allResults = FALSE,
...
)
data |
Either a matrix with counts/abundances, OR a |
predictor |
The predictor of interest. Factor, OR if |
paired |
For paired/blocked experimental designs. Either a Factor with Subject/Block ID for running paired/blocked analysis, OR if |
relative |
Logical. Should |
p.adj |
Character. P-value adjustment. Default "fdr". See |
testStat |
Function. Function for calculating fold change. Should take two vectors as arguments. Default is a log fold change: |
testStat.pair |
Function. Function for calculating fold change. Should take two vectors as arguments. Default is a log fold change: |
allResults |
If TRUE will return raw results from the |
... |
Additional arguments for the |
A data.frame with with results.
# Creating random count_table and predictor
set.seed(4)
mat <- matrix(rnbinom(1000, size = 0.1, mu = 500), nrow = 100, ncol = 10)
rownames(mat) <- 1:100
pred <- c(rep("Control", 5), rep("Treatment", 5))
# Running Wilcoxon test on each feature
res <- DA.wil(data = mat, predictor = pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.