DA.pea | R Documentation |
Apply pearson correlation between multiple features and one predictor
DA.pea(data, predictor, relative = TRUE, p.adj = "fdr", ...)
data |
Either a matrix with counts/abundances, OR a |
predictor |
The predictor of interest. Either a Factor or Numeric, OR if |
relative |
Logical. Should |
p.adj |
Character. P-value adjustment. Default "fdr". See |
... |
Additional arguments for the |
A data.frame with with results.
# Creating random count_table and predictor set.seed(4) mat <- matrix(rnbinom(1000, size = 0.1, mu = 500), nrow = 50, ncol = 20) rownames(mat) <- 1:50 pred <- rnorm(20) # Running Pearson correlation on each feature res <- DA.pea(data = mat, predictor = pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.