DA.tta | R Documentation |
Apply welch t-test to multiple features with one predictor
DA.tta( data, predictor, paired = NULL, p.adj = "fdr", delta = 1, testStat = function(case, control) { mean(case) - mean(control) }, testStat.pair = function(case, control) { mean(case - control) }, allResults = FALSE, ... )
data |
Either a matrix with counts/abundances, OR a |
predictor |
The predictor of interest. Factor, OR if |
paired |
For paired/blocked experimental designs. Either a Factor with Subject/Block ID for running paired/blocked analysis, OR if data is a |
p.adj |
Character. P-value adjustment. Default "fdr". See |
delta |
Numeric. Pseudocount for zero-correction. |
testStat |
Function. Function for calculating fold change. Should take two vectors as arguments. Default is a simple difference: |
testStat.pair |
Function. Function for calculating fold change. Should take two vectors as arguments. Default is a simple difference: |
allResults |
If TRUE will return raw results from the |
... |
Additional arguments for the |
Note: Last feature in the data is used as reference for the log-ratio transformation.
A data.frame with with results.
# Creating random count_table and predictor set.seed(4) mat <- matrix(rnbinom(1000, size = 0.1, mu = 500), nrow = 100, ncol = 10) rownames(mat) <- 1:100 pred <- c(rep("Control", 5), rep("Treatment", 5)) # Running t-test on each feature res <- DA.tta(data = mat, predictor = pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.