DA.lao | R Documentation |
Apply ANOVA on multiple features with one predictor
, with log transformation of counts before normalization.
DA.lao( data, predictor, covars = NULL, relative = TRUE, p.adj = "fdr", delta = 1, allResults = FALSE, ... )
data |
Either a matrix with counts/abundances, OR a |
predictor |
The predictor of interest. Factor, OR if |
covars |
Either a named list with covariables, OR if |
relative |
Logical. Should |
p.adj |
Character. P-value adjustment. Default "fdr". See |
delta |
Numeric. Pseudocount for the log transformation. Default 1 |
allResults |
If TRUE will return raw results from the |
... |
Additional arguments for the |
A data.frame with with results.
# Creating random count_table and predictor set.seed(4) mat <- matrix(rnbinom(1500, size = 0.1, mu = 500), nrow = 100, ncol = 15) rownames(mat) <- 1:100 pred <- c(rep("A", 5), rep("B", 5), rep("C", 5)) # Running ANOVA on each feature res <- DA.lao(data = mat, predictor = pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.