| DA.kru | R Documentation | 
Apply kruskal-wallis test on multiple features with one predictor
DA.kru( data, predictor, relative = TRUE, p.adj = "fdr", allResults = FALSE, ... )
| data | Either a matrix with counts/abundances, OR a  | 
| predictor | The predictor of interest. Factor, OR if  | 
| relative | Logical. Should  | 
| p.adj | Character. P-value adjustment. Default "fdr". See  | 
| allResults | If TRUE will return raw results from the  | 
| ... | Additional arguments for the  | 
A data.frame with with results.
# Creating random count_table and predictor
set.seed(4)
mat <- matrix(rnbinom(1500, size = 0.1, mu = 500), nrow = 100, ncol = 15)
rownames(mat) <- 1:100
pred <- c(rep("A", 5), rep("B", 5), rep("C", 5))
# Running Kruskal-Wallis on each feature
res <- DA.kru(data = mat, predictor = pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.