| DA.ttr | R Documentation | 
Apply welch t-test to multiple features with one predictor
DA.ttr(
  data,
  predictor,
  paired = NULL,
  relative = TRUE,
  p.adj = "fdr",
  testStat = function(case, control) {     log2((mean(case) + 1)/(mean(control) + 1)) },
  testStat.pair = function(case, control) {     log2(mean((case + 1)/(control + 1))) },
  allResults = FALSE,
  ...
)
| data | Either a matrix with counts/abundances, OR a  | 
| predictor | The predictor of interest. Factor, OR if  | 
| paired | For paired/blocked experimental designs. Either a Factor with Subject/Block ID for running paired/blocked analysis, OR if data is a  | 
| relative | Logical. Should  | 
| p.adj | Character. P-value adjustment. Default "fdr". See  | 
| testStat | Function. Function for calculating fold change. Should take two vectors as arguments. Default is a log fold change:  | 
| testStat.pair | Function. Function for calculating fold change. Should take two vectors as arguments. Default is a log fold change:  | 
| allResults | If TRUE will return raw results from the  | 
| ... | Additional arguments for the  | 
A data.frame with with results.
# Creating random count_table and predictor
set.seed(4)
mat <- matrix(rnbinom(1000, size = 0.1, mu = 500), nrow = 100, ncol = 10)
rownames(mat) <- 1:100
pred <- c(rep("Control", 5), rep("Treatment", 5))
# Running t-test
res <- DA.ttr(data = mat, predictor = pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.