R/doCoxphMultivariable.R

Defines functions doCoxphMultivariable

Documented in doCoxphMultivariable

#' Fit a multivariable Cox model
#'
#' @name doCoxph
#' @export
doCoxphMultivariable <- function(
  input.d, var.names, var.descriptions, show.var.detail = FALSE,
  show.group.name.for.bin.var = FALSE, var.ref.groups = NULL,
  var.names.surv.time = c("os.yrs", "dss.yrs", "rfs.yrs"),
  var.names.surv.time2 = NULL,
  var.names.surv.status = c("os.sts", "dss.sts", "rfs.sts"),
  event.codes.surv = c("os.event", "dss.event", "rfs.event"),
  surv.descriptions = c("OS", "DSS", "PFS"),
  var.strata = NULL,
  missing.codes = c("N/A", "", "Unk"),
  use.firth = 1, firth.caption = FIRTH.CAPTION, add_log_hr = FALSE,
  stat.test = "waldtest", bold_pval = FALSE, sig.level = 0.05,
  round.digits.hr = 2,
  round.digits.p.value = 4, round.small = FALSE, scientific = FALSE,
  caption = NA, html.table.border = 0, banded.rows = FALSE,
  css.class.name.odd = "odd", css.class.name.even = "even",
  split.table = 300, format = c("long", "wide"), ...) {

  # Constants
  kLocalConstantHrSepFlag <- "kLocalConstantHrSepFlag" # separates HR estimates
  col.th.style <- COL.TH.STYLE
  row.th.style <- ROW.TH.STYLE
  row.td.style.for.multi.cox <- ROW.TD.STYLE.FOR.MULTI.COX
  row.td.style.for.multi.cox.align.top <- ROW.TD.STYLE.FOR.MULTI.COX.ALIGN.TOP

  # Initial assertion checks
  num.surv.endpoints <- length(var.names.surv.time)
  assertthat::assert_that(num.surv.endpoints == length(var.names.surv.status),
                          num.surv.endpoints == length(event.codes.surv),
                          num.surv.endpoints == length(surv.descriptions))
  if (!is.null(var.names.surv.time2)) {
    assertthat::assert_that(num.surv.endpoints == length(var.names.surv.time2))
  }

  # Ensure variable names are not named vectors
  var.names <- unname(var.names)
  var.names.surv.time <- unname(var.names.surv.time)
  var.names.surv.time2 <- unname(var.names.surv.time2)
  var.names.surv.status <- unname(var.names.surv.status)
  var.strata <- unname(var.strata)

  # Remove all variables not used in analysis, ensure survival times are numeric
  input.d <- input.d %>%
    dplyr::select(dplyr::all_of(c(
      var.names,
      var.names.surv.time,
      var.names.surv.time2,
      var.names.surv.status,
      var.strata
    ))) %>%
    droplevels() %>%
    dplyr::mutate_at(c(var.names.surv.time, var.names.surv.time2), as.numeric)

  # Setup default for variable reference groups and result matrix
  nvar <- length(var.names)
  var.ref.groups <- var.ref.groups %||% rep(NA, nvar)
  rn <- paste(var.names, rep(surv.descriptions, each = nvar), sep = "-")
  cn <- c("# of events / n", "Hazard Ratio (95% CI)",
          paste0(ifelse(stat.test == "logtest", "LRT ", ""), "P-value"))
  if (add_log_hr) {
    cn <- append(cn, "Log Hazard Ratio", 1)
  }
  result.table <- matrix(
    NA_character_,
    nrow = nvar * num.surv.endpoints,
    ncol = length(cn),
    dimnames = list(rn, cn)
  )
  for (i in seq_along(var.names)) {
    x <- var.names[i]
    input.d <- input.d %>%  # remove any cases with NA's or missing values
      dplyr::filter(!is.na(.[, x]) & !(.[, x] %in% missing.codes))
    # automatically set ref.group to lowest group if not specified
    if (is.factor(input.d[[x]]) & is.na(var.ref.groups[i])) {
      var.ref.groups[i] <- names(table(input.d[[x]]))[1]
    }
    if (is.na(var.ref.groups[i])) {
      input.d[, x] <- as.numeric(input.d[[x]])
    } else {
      input.d[, x] <- stats::relevel(as.factor(input.d[[x]]), var.ref.groups[i])
    }
  }

  cox.stats.output <- list()
  for (j in seq_len(num.surv.endpoints)) {
    surv.formula <- surv_formula(
      time = var.names.surv.time[j],
      status = var.names.surv.status[j],
      event = event.codes.surv[j],
      terms = var.names,
      time2 = var.names.surv.time2[j],
      strata = var.strata
    )
    temp.d <- input.d %>%
      dplyr::filter(!is.na(.[, var.names.surv.status[[j]]]) &
                      !is.na(.[, var.names.surv.time[[j]]]))
    cox.stats <- prettyCoxph(surv.formula, input.d = temp.d,
                             use.firth = use.firth)
    var.idx <- 0
    for (i in seq_along(var.names)) {
      var.name <- var.names[i]
      var.idx <- max(var.idx) + 1
      if (!is.na(var.ref.groups[i]))
        var.idx <- var.idx:(var.idx + nlevels(temp.d[[var.name]]) - 2)
      e.n <- paste(cox.stats$nevent, "/", cox.stats$n)
      hr.ci <- cox.stats$output %>%
        magrittr::extract(var.idx, c("estimate", "conf.low", "conf.high")) %>%
        format_hr_ci(digits = round.digits.hr, labels = FALSE, method = "Sci") %>%
        paste0(ifelse(cox.stats$used.firth, firth.caption, "")) %>%
        paste(collapse = kLocalConstantHrSepFlag)
      pval <- switch(
        stat.test,
        logtest = {
          cox.exclude.var <- coxph(surv_formula(var.names.surv.time[j],
                                                var.names.surv.status[j],
                                                event.codes.surv[j],
                                                var.names[-i],
                                                var.names.surv.time2[j]),
                                   temp.d)
          stats::anova(cox.stats$fit, cox.exclude.var) %>%
            dplyr::pull(-1) %>%
            magrittr::extract(2)
        },
        waldtest = {
          if (!requireNamespace("rms", quietly = TRUE)) {
            stop("Package \"rms\" is required. Please install it.",
                 call. = FALSE)
          } else {
            stats::anova(rms::cph(surv_formula(var.names.surv.time[j],
                                               var.names.surv.status[j],
                                               event.codes.surv[j],
                                               var.names,
                                               var.names.surv.time2[j]),
                                  temp.d))[i, "P"]
          }
        }
      )
      pval_f <- pval %>%
        round_pval(round.small = round.small,
                   scientific = scientific,
                   digits = round.digits.p.value) %>%
        ifelse(bold_pval & pval < sig.level, paste0("**", ., "**"), .)
      res <- c(e.n, hr.ci, pval_f)
      if (add_log_hr) {
        log_hr <- cox.stats$output %>%
          magrittr::extract(var.idx, "estimate") %>%
          log() %>%
          round(digits = round.digits.hr) %>%
          paste0(ifelse(cox.stats$used.firth, firth.caption, "")) %>%
          paste(collapse = kLocalConstantHrSepFlag)
        res <- append(res, log_hr, 1)
      }
      result.table[nvar * (j - 1) + i, ] <- res
      cox.stats.output[[surv.descriptions[j]]] <- cox.stats
    }
  }

  ### generate html table ###
  result.table.html <- paste0("<table border=", html.table.border, ">",
                              ifelse(is.na(caption), "",
                                     paste0("<caption style='",
                                            TABLE.CAPTION.STYLE, "'>", caption,
                                            "</caption>")),
                              "<tr><th style='", col.th.style,
                              "' colspan=2></th><th style='", col.th.style,
                              "'>",
                              paste(colnames(result.table),
                                    collapse = paste0("</th><th style='",
                                                      col.th.style, "'>")),
                              "</th></tr>")
  # print value
  i <- 1
  nvar <- length(var.names)
  while (i <= nrow(result.table)) {
    is.first.row <- TRUE
    tr.class <- ifelse(banded.rows, paste0(" class='", ifelse((floor(i / nvar) + 1) %% 2 == 0,
                                                             css.class.name.even, css.class.name.odd), "'"), "")
    result.table.html <- paste0(result.table.html, "<tr", tr.class, "><th style='", row.td.style.for.multi.cox.align.top, "' rowspan=",
                                nvar, ">", surv.descriptions[floor((i - 1) / nvar) + 1], "</th>")
    for (j in seq_along(var.names)) {
      result.table.html <- paste0(
        result.table.html,
        ifelse(is.first.row, "", paste0("<tr", tr.class, ">")),
        "<th style='", row.td.style.for.multi.cox, "'>",
        var.descriptions[j],
        #"</th><td style='",row.td.style.for.multi.cox,"'>",paste(result.table[i,],collapse=paste("</td><td style='",row.td.style.for.multi.cox,"'>"),sep=""),"</td></tr>",
        ifelse(is.first.row,
               paste0("</th><td style='", row.td.style.for.multi.cox.align.top,
                      "' rowspan=", nvar, ">",
                      result.table[i, 1]),
               ""),
        "</td><td style='", row.td.style.for.multi.cox, "'>",
        paste0(gsub(kLocalConstantHrSepFlag, "<br>", result.table[i, -1]),
               collapse = paste("</td><td style='", row.td.style.for.multi.cox, "'>")), "</td></tr>")
      is.first.row <- FALSE # if run any time after the first row, must not be the first row any more
      i <- i + 1
    }
  }
  result.table.html <- paste0(result.table.html, "</table>")
  ### end of generate html table ###

  ### generate word-friendly table via pander i.e. result.table.bamboo ###
  result.table.bamboo <- result.table
  result.table.ncol <- ncol(result.table)
  result.table.bamboo.base.indexes <- c() # base indexes for each survival end point in result.table.bamboo
  num.surv <- length(surv.descriptions) # number of survival end points
  num.var <- length(var.descriptions) # number of variables
  for (i in seq_len(num.surv)) {
    result.table.bamboo.base.index <- 1 + (i - 1) * (num.var + 1)
    if (i == 1) {
      result.table.bamboo <- rbind(rep("", result.table.ncol), result.table.bamboo)
    } else {
      result.table.bamboo <- rbind(
          result.table.bamboo[1:(result.table.bamboo.base.index - 1), ],
          rep("", result.table.ncol),
          result.table.bamboo[result.table.bamboo.base.index:nrow(result.table.bamboo), ])
    }
    rownames(result.table.bamboo)[result.table.bamboo.base.index] <- paste0("**", surv.descriptions[i], "**")
    rownames(result.table.bamboo)[result.table.bamboo.base.index + c(1:num.var)] <- paste0(var.descriptions,
      ifelse(
        rep(show.var.detail, length(var.ref.groups)) * !is.na(var.ref.groups), # do not show ref group if no ref group to show
        paste0(" (reference group: ", var.ref.groups, ")"), ""))
    # want to show # of events only once for each surv endpoint
    result.table.bamboo[result.table.bamboo.base.index, 1] <- result.table.bamboo[result.table.bamboo.base.index + 1, 1]
    result.table.bamboo[result.table.bamboo.base.index + c(1:num.var), 1] <- ""
    result.table.bamboo.base.indexes <- c(result.table.bamboo.base.indexes, result.table.bamboo.base.index)
  }
  # want to add a column to describe different factor level for categorical
  # whenever reference group is specified
  if (sum(is.na(var.ref.groups)) != length(var.ref.groups)) {
    first.col.name <- colnames(result.table.bamboo)[1]
    result.table.bamboo <- cbind(result.table.bamboo[, 1], "",
                                 result.table.bamboo[, -1])
    colnames(result.table.bamboo)[1] <- first.col.name
    # column with the hazard ratios
    if (add_log_hr) hr.col.index <- 3:4 else hr.col.index <- 3
    for (i in seq_len(num.surv)) {
      result.table.bamboo.base.index <- result.table.bamboo.base.indexes[i]
      rows.added <- 0
      for (var.count in seq_along(var.names)) {
        if (!is.na(var.ref.groups[var.count])) {
          ref.group <- var.ref.groups[var.count]
          other.groups <- names(table(input.d[, var.names[var.count]]))
          other.groups <- other.groups[other.groups != ref.group & !(other.groups %in% missing.codes)]
          num.other.groups <- length(other.groups)
          curr.base.index <- result.table.bamboo.base.index + (var.count - 1) + rows.added + 1
          if (num.other.groups > 1) {
            for (j in seq_len(num.other.groups - 1)) {
              if (curr.base.index < nrow(result.table.bamboo)) {
                last.row.name <- rownames(result.table.bamboo)[nrow(result.table.bamboo)]
                result.table.bamboo <- rbind(
                    result.table.bamboo[1:curr.base.index, ],
                    rep("", ncol(result.table.bamboo)),
                    result.table.bamboo[(curr.base.index + 1):nrow(result.table.bamboo), ])
                rownames(result.table.bamboo)[nrow(result.table.bamboo)] <- last.row.name
              } else {
                result.table.bamboo <- rbind(
                    result.table.bamboo[1:curr.base.index, ],
                    rep("", ncol(result.table.bamboo))
                )
              }
              rows.added <- rows.added + 1
            }
          }
          if (num.other.groups > 1 | show.group.name.for.bin.var) {
            base_rows <- curr.base.index:(curr.base.index + num.other.groups - 1)
            result.table.bamboo[base_rows, hr.col.index] <-
              stringr::str_split_fixed(
                string = result.table.bamboo[curr.base.index, hr.col.index],
                pattern = kLocalConstantHrSepFlag,
                n = num.other.groups) %>%
              t()
            result.table.bamboo[base_rows, 2] <- other.groups
          }
        }
      }

      # need to update result.table.bamboo.base.indexes since we've added rows!!!
      if (i < num.surv) {
        result.table.bamboo.base.indexes[(i + 1):num.surv] <- result.table.bamboo.base.indexes[(i + 1):num.surv] + rows.added
      }
    }
  }

  # Reformat if "wide" format chosen
  format <- match.arg(format)
  if (format == "wide") {
    group_size <- nrow(result.table.bamboo) / num.surv
    splits <- purrr::map(result.table.bamboo.base.indexes, seq, length.out = group_size)
    tab_splits <- purrr::map(splits, ~ result.table.bamboo[., ])

    tmp <- purrr::map(tab_splits, ~ {
      tmp_vars <- rownames(.)
      tmp_e.n <- paste(tmp_vars[1], .[1, 1], sep = ": ")
      tmp_df <- data.frame(
        Variable = tmp_vars,
        Levels = .[, 2],
        .[, -1:-2, drop = FALSE],
        check.names = FALSE
      ) %>%
        utils::tail(-1) %>%
        dplyr::rename_at(-1:-2, ~ paste(tmp_vars[1], ., sep = ": ")) %>%
        rbind(c("# of events / n", "", tmp_e.n, rep("", 1 + add_log_hr)), .)
    }) %>%
      purrr::reduce(dplyr::inner_join, by = c("Variable", "Levels")) %>%
      rlang::set_names(gsub(".*: ", "", names(.)))

    tmp_colnames <- colnames(tmp)
    colnames(tmp) <- tmp[1, ]
    result.table.bamboo <- as.matrix(rbind(tmp_colnames, tmp[-1, ]))
  }

  # subscript ("<sup>|</sup>") and line break ("<br>") syntax for pandoc
  options("table_counter" = options()$table_counter - 1)
  result.table.bamboo <- result.table.bamboo %>%
    gsub(pattern = "<sup>|</sup>", replacement = "^", .) %>%
    pander::pandoc.table.return(., caption = caption,
                                emphasize.rownames = FALSE,
                                split.table = split.table, ...) %>%
    gsub(pattern = kLocalConstantHrSepFlag, replacement = "; ", .) %>%
    gsub(pattern = "<br>", replacement = "\\\\\n", .)
  ### end of result.table.bamboo ###

  ### clean result.table ###
  result.table <- gsub(kLocalConstantHrSepFlag, ", ", result.table)
  ### end of clean result.table ###

  list("result.table" = result.table,
       "result.table.html" = result.table.html,
       "result.table.bamboo" = result.table.bamboo,
       "cox.stats" = cox.stats.output)
}
TalhoukLab/biostatUtil documentation built on April 14, 2025, 4:15 a.m.