#' Do interaction test with cox model
#' likelihood ratio test only - two terms only
#'
#' Only a LRT can be performed (2015-08-12). TODO: add penalized LRT?
#'
#' @inheritParams doCoxph
#' @return A list with the following elements
#' @note the order of variable names in var.names dictates when will the term
#' added in stepwise likelihood ratio test of nested models i.e. given
#' `var.names = c("A", "B", "C")`, likelihood ratio test of nested model will
#' be:
#'
#' A
#' A + B
#' A + B + C
#' @author Samuel Leung
#' @export
doInteractionCox <- function(
input.d, var.names, var.descriptions,
show.var.detail = FALSE,
show.group.name.for.bin.var = FALSE, var.ref.groups = NULL,
var.names.surv.time = c("os.yrs", "dss.yrs", "rfs.yrs"),
var.names.surv.status = c("os.sts", "dss.sts", "rfs.sts"),
event.codes.surv = c("os.event", "dss.event", "rfs.event"),
surv.descriptions = c("OS", "DSS", "PFS"),
missing.codes = c("N/A", "", "Unk"),
use.firth = 1, firth.caption = FIRTH.CAPTION,
round.digits.p.value = 4, round.small = FALSE, scientific = FALSE,
caption = NA, html.table.border = 0, banded.rows = FALSE,
css.class.name.odd = "odd", css.class.name.even = "even",
split.table = 300, ...) {
# Constants
kLocalConstantHrSepFlag <- "kLocalConstantHrSepFlag" # separates HR estimates
col.th.style <- COL.TH.STYLE
row.th.style <- ROW.TH.STYLE
row.td.style.for.multi.cox <- ROW.TD.STYLE.FOR.MULTI.COX
row.td.style.for.multi.cox.align.top <- ROW.TD.STYLE.FOR.MULTI.COX.ALIGN.TOP
# Initial assertion checks
num.surv.endpoints <- length(var.names.surv.time)
assertthat::assert_that(num.surv.endpoints == length(var.names.surv.status),
num.surv.endpoints == length(event.codes.surv),
num.surv.endpoints == length(surv.descriptions))
# Check interactions
for (var.name in var.names) {
if (!grepl(":", var.name)) {
if (is.factor(input.d[, var.name]))
input.d[, var.name] <- droplevels(input.d[, var.name])
} else {
# this must be an interaction term ... separate them and droplevels on
# individual variables
me.vars <- vapply(strsplit(var.name, ":")[[1]], stringr::str_trim,
FUN.VALUE = character(length(var.names)),
USE.NAMES = FALSE)
for (me.var in me.vars) {
input.d[, me.var] <- droplevels(input.d[, me.var])
if (!me.var %in% var.names) {
warning("main effect not in model: ", me.var)
}
}
}
}
# Ensure survival times are numeric
input.d <- input.d %>%
dplyr::mutate_at(var.names.surv.time, as.numeric)
# Setup default for variable reference groups and result matrix
nvar <- length(var.names)
var.ref.groups <- var.ref.groups %||% rep(NA, nvar)
rn <- paste(var.names, rep(surv.descriptions, each = nvar), sep = "-")
cn <- c("# of events / n", "Hazard Ratio (95% CI)", "LRT P-value")
result.table <- matrix(NA_character_, nrow = nvar * num.surv.endpoints,
ncol = 3, dimnames = list(rn, cn))
for (i in seq_along(var.names)) {
x <- var.names[i]
if (!grepl(":", x)) {
input.d <- input.d %>% # remove any cases with NA's or missing values
dplyr::filter(!is.na(.[, x]) & !(.[, x] %in% missing.codes))
# automatically set ref.group to lowest group if not specified
if (is.factor(input.d[, x])) {
input.d[, x] <- droplevels(input.d[, x])
if (is.na(var.ref.groups[i]))
var.ref.groups[i] <- names(table(input.d[, x]))[1]
}
if (is.na(var.ref.groups[i])) {
input.d[, x] <- as.numeric(input.d[, x])
} else {
var.levels <- names(table(input.d[, x]))
var.levels <- c(var.ref.groups[i], var.levels[-which(
var.levels == var.ref.groups[i])])
input.d[, x] <- factor(input.d[, x], levels = var.levels)
}
}
}
cox.stats.output <- list()
for (j in seq_len(num.surv.endpoints)) {
temp.d <- input.d %>%
dplyr::filter(!is.na(.[, var.names.surv.status[[j]]]) &
!is.na(.[, var.names.surv.time[[j]]]))
surv.formula <- paste0("Surv(", var.names.surv.time[j], ", ", var.names.surv.status[j], "=='", event.codes.surv[j], "' ) ~")
curr.var.names <- c()
var.idx <- 0
for (i in seq_along(var.names)) {
curr.var.names <- c(curr.var.names, var.names[i])
var.idx <- max(var.idx) + 1
if (!is.na(var.ref.groups[i]))
var.idx <- c(var.idx:(var.idx + dplyr::n_distinct(temp.d[, var.names[i]]) - 2))
cox.stats <- prettyCoxph(stats::as.formula(paste(surv.formula, paste(curr.var.names, collapse = "+"))),
input.d = temp.d, use.firth = use.firth)
e.n <- paste(cox.stats$nevent, "/", cox.stats$n)
hr.ci <- cox.stats$output %>%
magrittr::extract(var.idx, c("estimate", "conf.low", "conf.high")) %>%
format_hr_ci(digits = 2, labels = FALSE, method = "Sci") %>%
paste0(ifelse(cox.stats$used.firth, firth.caption, "")) %>%
paste(collapse = kLocalConstantHrSepFlag)
if (length(curr.var.names) == 1) {
p.value <- stats::anova(cox.stats$fit) %>%
dplyr::pull(-1) %>%
magrittr::extract(2)
} else {
p.value <- stats::anova(
coxph(stats::as.formula(paste(surv.formula, paste(curr.var.names[-length(curr.var.names)], collapse = "+"))), data = temp.d),
cox.stats$fit) %>%
dplyr::pull(-1) %>%
magrittr::extract(2)
}
p.value <- round_pval(p.value, round.small = round.small,
scientific = scientific,
digits = round.digits.p.value)
result.table[nvar * (j - 1) + i, ] <- c(e.n, hr.ci, p.value)
}
cox.stats.output[[surv.descriptions[j]]] <- cox.stats # only capture the full model i.e. the last one
}
### generate word-friendly table via pander i.e. result.table.bamboo ... ###
result.table.bamboo <- result.table
result.table.ncol <- ncol(result.table)
result.table.bamboo.base.indexes <- c() # base indexes for each survival end point in result.table.bamboo
num.surv <- length(surv.descriptions) # number of survival end points
num.var <- length(var.descriptions) # number of variables
for (i in 1:num.surv) {
result.table.bamboo.base.index <- 1 + (i - 1) * (num.var + 1)
if (i == 1) {
result.table.bamboo <- rbind(rep("", result.table.ncol), result.table.bamboo)
} else {
result.table.bamboo <- rbind(
result.table.bamboo[1:(result.table.bamboo.base.index - 1), ],
rep("", result.table.ncol),
result.table.bamboo[result.table.bamboo.base.index:nrow(result.table.bamboo), ])
}
rownames(result.table.bamboo)[result.table.bamboo.base.index] <- paste0("**", surv.descriptions[i], "**")
rownames(result.table.bamboo)[result.table.bamboo.base.index + c(1:num.var)] <- var.descriptions
# want to show # of events only once for each surv endpoint
result.table.bamboo[result.table.bamboo.base.index, 1] <- result.table.bamboo[result.table.bamboo.base.index + 1, 1]
result.table.bamboo[result.table.bamboo.base.index + c(1:num.var), 1] <- ""
result.table.bamboo.base.indexes <- c(result.table.bamboo.base.indexes, result.table.bamboo.base.index)
}
# want to add a column to describe different factor level for categorical
# whenever reference group is specified
if (sum(is.na(var.ref.groups)) != length(var.ref.groups)) {
first.col.name <- colnames(result.table.bamboo)[1]
result.table.bamboo <- cbind(result.table.bamboo[, 1], "", result.table.bamboo[, 2:3])
colnames(result.table.bamboo)[1] <- first.col.name
hr.col.index <- 3 # column with the hazard ratios
for (i in 1:num.surv) {
result.table.bamboo.base.index <- result.table.bamboo.base.indexes[i]
rows.added <- 0
for (var.count in 1:length(var.names)) {
if (!is.na(var.ref.groups[var.count])) {
ref.group <- var.ref.groups[var.count]
other.groups <- names(table(input.d[, var.names[var.count]]))
other.groups <- other.groups[other.groups != ref.group & !(other.groups %in% missing.codes)]
num.other.groups <- length(other.groups)
curr.base.index <- result.table.bamboo.base.index + (var.count - 1) + rows.added + 1
if (num.other.groups > 1) {
for (j in 1:(num.other.groups - 1)) {
if (curr.base.index < nrow(result.table.bamboo)) {
last.row.name <- rownames(result.table.bamboo)[nrow(result.table.bamboo)]
result.table.bamboo <- rbind(
result.table.bamboo[1:curr.base.index, ],
rep("", ncol(result.table.bamboo)),
result.table.bamboo[(curr.base.index + 1):nrow(result.table.bamboo), ])
rownames(result.table.bamboo)[nrow(result.table.bamboo)] <- last.row.name
} else {
result.table.bamboo <- rbind(
result.table.bamboo[1:curr.base.index, ],
rep("", ncol(result.table.bamboo))
)
}
rows.added <- rows.added + 1
}
}
if (num.other.groups > 1 | show.group.name.for.bin.var) {
result.table.bamboo[curr.base.index:(curr.base.index + num.other.groups - 1), hr.col.index] <-
strsplit(result.table.bamboo[curr.base.index, hr.col.index], kLocalConstantHrSepFlag)[[1]]
result.table.bamboo[curr.base.index:(curr.base.index + num.other.groups - 1), hr.col.index - 1] <- other.groups
}
}
}
# need to update result.table.bamboo.base.indexes since we've added rows!!!
if (i < num.surv) {
result.table.bamboo.base.indexes[(i + 1):num.surv] <- result.table.bamboo.base.indexes[(i + 1):num.surv] + rows.added
}
}
}
# subscript ("<sup>|</sup>") and line break ("<br>") syntax for pandoc
options("table_counter" = options()$table_counter - 1)
result.table.bamboo <- result.table.bamboo %>%
gsub(pattern = "<sup>|</sup>", replacement = "^", .) %>%
pander::pandoc.table.return(., caption = ifelse(is.na(caption), "", paste0("*", addTableNumber(caption), "*")),
emphasize.rownames = FALSE,
split.table = split.table, ...) %>%
gsub(pattern = kLocalConstantHrSepFlag, replacement = "; ", .) %>%
gsub(pattern = "<br>", replacement = "\\\\\n", .)
### end of result.table.bamboo ###
### generate html table ... ###
result.table.html <- result.table.bamboo # just set it the same as bamboo
### end of generate html table ###
### clean result.table ###
result.table <- gsub(kLocalConstantHrSepFlag, ", ", result.table)
### end of clean result.table ###
return(list("result.table" = result.table,
"result.table.html" = result.table.html,
"result.table.bamboo" = result.table.bamboo,
"cox.stats" = cox.stats.output))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.