HierarchicalEmulator <- R6Class(
"Hierarchical",
inherit = Emulator,
public = list(
s_diag = NULL,
samples = 0,
em_type = "mean",
initialize = function(basis_f, beta, u, ranges, data = NULL, model = NULL,
original_em = NULL, out_name = NULL, a_vars = NULL,
discs = NULL, s_diag = NULL, samples = 0,
multiplier = 1) {
if (!is.null(s_diag))
self$s_diag <- s_diag else self$s_diag <- function(x, n) 0
self$samples <- samples
self$model <- model
self$model_terms <- tryCatch(
c("1", labels(terms(self$model))),
error = function(e) return(NULL)
)
self$o_em <- original_em
self$basis_f <- basis_f
self$beta_mu <- beta$mu
self$beta_sigma <- beta$sigma
self$u_mu <- function(x) 0
self$multiplier <- multiplier
if(is.numeric(u$sigma)) self$u_sigma <- self$multiplier * u$sigma
else self$u_sigma <- function(x) self$multiplier * (u$sigma)(x)
self$corr <- u$corr
if (!is.null(out_name)) self$output_name <- out_name
if (is.null(a_vars)) {
self$active_vars <- map_lgl(seq_along(ranges), function(x) {
point_vec <- c(rep(0, x-1), 1, rep(0, length(ranges)-x))
func_vals <- map_dbl(self$basis_f, exec, point_vec)
sum(func_vals) > 1
})
}
else self$active_vars <- a_vars
if (all(self$active_vars == FALSE)) self$active_vars <- c(TRUE)
if (!is.null(discs)) {
self$disc$internal <- ifelse(!is.null(discs$internal), discs$internal, 0)
self$disc$external <- ifelse(!is.null(discs$external), discs$external, 0)
}
self$beta_u_cov <- function(x) rep(0, length(self$beta_mu))
if (is.null(ranges)) stop("Ranges for the parameters must be specified.")
self$ranges <- ranges
if (!is.null(data)) {
self$in_data <- data.matrix(
eval_funcs(
scale_input, data[,names(self$ranges)], self$ranges))
self$out_data <- data[, !names(data) %in% names(self$ranges)]
}
if (!is.null(self$in_data)) {
temp_in <- eval_funcs(
scale_input,
data.frame(self$in_data), self$ranges, FALSE)
sample_mod <- map_dbl(
seq_len(nrow(temp_in)),
~self$s_diag(temp_in[.,], self$samples[.]))
if (is.numeric(self$u_sigma))
d_corr <- self$u_sigma^2 *
self$corr$get_corr(self$in_data, actives = self$active_vars) +
diag(sample_mod, nrow = nrow(self$in_data))
else
d_corr <- diag(
apply(
self$in_data, 1, self$u_sigma)^2, nrow = nrow(self$in_data)) %*%
self$corr$get_corr(self$in_data, actives = self$active_vars) +
diag(sample_mod, nrow = nrow(self$in_data))
private$data_corrs <- tryCatch(
private$data_corrs <- chol2inv(chol(d_corr)),
error = function(e) {
ginv(d_corr)
}
)
private$design_matrix <- t(
apply(
self$in_data, 1,
function(x) map_dbl(self$basis_f, exec, x)))
if (nrow(private$design_matrix) == 1)
private$design_matrix <- t(private$design_matrix)
private$u_var_modifier <- private$data_corrs %*%
private$design_matrix %*% self$beta_sigma %*%
t(private$design_matrix) %*% private$data_corrs
private$u_exp_modifier <- private$data_corrs %*%
(self$out_data - private$design_matrix %*% self$beta_mu)
private$beta_u_cov_modifier <- self$beta_sigma %*%
t(private$design_matrix) %*% private$data_corrs
}
},
get_exp = function(x, samps = NULL, check_neg = TRUE, c_data = NULL) {
x <- eval_funcs(
scale_input,
x[, names(self$ranges)[names(self$ranges) %in% names(x)]], self$ranges)
if (!all(self$beta_sigma == 0) || is.null(self$model)) {
g <- t(
apply(
x, 1, function(y) map_dbl(self$basis_f, exec, y)))
if (length(self$beta_mu) == 1) beta_part <- g * self$beta_mu
else beta_part <- g %*% self$beta_mu
}
else
beta_part <- predict(self$model, data.frame(x))
x <- data.matrix(x)
bu <- t(apply(x, 1, self$beta_u_cov))
u_part <- apply(x, 1, self$u_mu)
if (!is.null(self$in_data)) {
if (is.null(c_data))
c_data <- t(self$corr$get_corr(x, self$in_data, self$active_vars))
if (is.numeric(self$u_sigma)) {
if (length(self$beta_mu) == 1)
u_part <- t(u_part + (t(bu) %*% t(private$design_matrix) +
self$u_sigma^2 * c_data) %*%
private$u_exp_modifier)
else
u_part <- u_part + (bu %*% t(private$design_matrix) +
self$u_sigma^2 * c_data) %*%
private$u_exp_modifier
}
else {
if (length(self$beta_mu) == 1)
u_part <- t(u_part + (t(bu) %*% t(private$design_matrix) +
sweep(
sweep(
c_data, 2,
apply(
self$in_data, 1,
self$u_sigma), "*"), 1,
apply(
x, 1,
self$u_sigma), "*")) %*%
private$u_exp_modifier)
else
u_part <- u_part + (bu %*% t(private$design_matrix) +
sweep(
sweep(
c_data, 2,
apply(
self$in_data, 1,
self$u_sigma), "*"), 1,
apply(x, 1, self$u_sigma), "*")) %*%
private$u_exp_modifier
}
}
if (length(self$beta_mu) == 1) out_val <- c(beta_part + u_part)
else out_val <- beta_part + u_part
if (self$em_type == 'variance' && check_neg && any(out_val <= 0)) {
x_chg <- data.frame(eval_funcs(
scale_input,
x, self$ranges,
forward = FALSE)) |> setNames(names(self$ranges))
vars <- self$get_cov(x_chg, check_neg = FALSE)
which_neg <- which(out_val <= 0)
relev_vals <- data.frame(m = out_val[which_neg], v = vars[which_neg])
replace_vals <- apply(
relev_vals, 1, function(x) get_truncation(x[[1]], x[[2]]))
for (i in seq_along(replace_vals)) {
out_val[which_neg[i]] <- replace_vals[[i]]
}
}
return(out_val)
},
get_cov = function(x, xp = NULL, full = FALSE,
samps = NULL, check_neg = TRUE,
c_x = NULL, c_xp = NULL) {
beta_part <- 0
x <- eval_funcs(
scale_input,
x[, names(self$ranges)[names(self$ranges) %in% names(x)]], self$ranges)
if (!all(self$beta_sigma == 0))
g_x <- apply(
x, 1,
function(y) map_dbl(self$basis_f, exec, y))
else g_x <- NULL
x <- data.matrix(x)
bupart_x <- apply(x, 1, self$beta_u_cov)
null_flag <- FALSE
if (is.null(xp)) {
null_flag <- TRUE
xp <- x
g_xp <- g_x
bupart_xp <- bupart_x
}
else {
xp <- eval_funcs(
scale_input,
xp[, names(self$ranges)[names(self$ranges) %in% names(xp)]], self$ranges)
if (!all(self$beta_sigma == 0))
g_xp <- apply(
xp, 1,
function(y) map_dbl(self$basis_f, exec, y))
else g_xp <- NULL
xp <- data.matrix(xp)
bupart_xp <- apply(xp, 1, self$beta_u_cov)
}
if (full || nrow(x) != nrow(xp)) {
x_xp_c <- self$corr$get_corr(xp, x, self$active_vars)
if (!is.null(g_x)) {
if (is.null(nrow(g_x))) beta_part <- g_x %*% self$beta_sigma %*% g_xp
else beta_part <- t(g_x) %*% self$beta_sigma %*% g_xp
}
if (is.numeric(self$u_sigma))
u_part <- self$u_sigma^2 * x_xp_c
else
u_part <- sweep(
sweep(
x_xp_c, 2,
apply(xp, 1,
self$u_sigma), "*"), 1, apply(x, 1, self$u_sigma), "*")
if (!is.null(self$in_data)) {
if (is.null(c_x))
c_x <- self$corr$get_corr(self$in_data, x, self$active_vars)
if (is.null(c_xp)) {
c_xp <- if(null_flag)
c_x
else
self$corr$get_corr(self$in_data, xp, self$active_vars)
}
# if(nrow(x) == 1) {
# c_x <- t(c_x)
# c_xp <- t(c_xp)
# }
if (is.numeric(self$u_sigma)) {
u_part <- u_part - self$u_sigma^4 * c_x %*%
(private$data_corrs - private$u_var_modifier) %*% t(c_xp)
bupart_x <- bupart_x -
private$beta_u_cov_modifier %*%
(private$design_matrix %*% bupart_x + self$u_sigma^2 * t(c_x))
bupart_xp <- if (null_flag)
bupart_x
else
bupart_xp - private$beta_u_cov_modifier %*%
(private$design_matrix %*% bupart_xp + self$u_sigma^2 * t(c_xp))
}
else {
c_x <- sweep(
sweep(
matrix(c_x, nrow = nrow(x)), 2,
apply(
self$in_data, 1,
self$u_sigma), "*"), 1,
apply(x, 1, self$u_sigma), "*")
c_xp <- sweep(
sweep(
matrix(c_xp, nrow = nrow(xp)), 2,
apply(
self$in_data, 1,
self$u_sigma), "*"), 1,
apply(xp, 1, self$u_sigma), "*")
u_part <- u_part - c_x %*%
(private$data_corrs - private$u_var_modifier) %*% t(c_xp)
if (!all(private$beta_u_cov_modifier == 0)) {
bupart_x <- bupart_x -
private$beta_u_cov_modifier %*%
(private$design_matrix %*% bupart_x + t(c_x))
bupart_xp <- if(null_flag)
bupart_x
else
bupart_xp - private$beta_u_cov_modifier %*%
(private$design_matrix %*% bupart_xp + t(c_xp))
}
}
if (is.null(nrow(g_x))) {
bupart_x <- t(bupart_x)
bupart_xp <- t(bupart_xp)
}
}
if (!all(bupart_x == 0)) {
if (is.null(nrow(g_x)))
bupart <- outer(g_x, bupart_xp, "*") + outer(bupart_x, g_xp, "*")
else bupart <- t(g_x) %*% bupart_xp + t(bupart_x) %*% g_xp
}
else bupart <- 0
}
else {
point_seq <- seq_len(nrow(x))
if (!is.null(g_x)) {
if (is.null(nrow(g_x)))
beta_part <- diag(diag(self$beta_sigma) * outer(g_x, g_xp))
else
beta_part <- map_dbl(
point_seq, ~g_x[,.] %*% self$beta_sigma %*% g_xp[,.])
}
if (identical(x, xp)) {
if (is.numeric(self$u_sigma)) u_part <- rep(self$u_sigma^2, length = nrow(x))
else u_part <- map_dbl(point_seq, ~self$u_sigma(x[.,]^2))
}
else {
if (is.numeric(self$u_sigma))
u_part <- self$u_sigma^2 *
diag(self$corr$get_corr(x, xp, self$active_vars))
else
u_part <- map_dbl(
point_seq, ~self$u_sigma(x[.,]) *
self$u_sigma(xp[.,])) *
diag(self$corr$get_corr(x, xp, self$active_vars))
}
if (!is.null(self$in_data)) {
if (is.null(c_x))
c_x <- self$corr$get_corr(self$in_data, x, self$active_vars)
if (is.null(c_xp)) {
c_xp <- if(null_flag)
c_x
else
self$corr$get_corr(self$in_data, xp, self$active_vars)
}
# if (nrow(x) == 1) {
# c_x <- t(c_x)
# c_xp <- t(c_xp)
# }
if (is.numeric(self$u_sigma)) {
c_x <- self$u_sigma^2 * c_x
c_xp <- self$u_sigma^2 * c_xp
}
else {
c_x <- sweep(
sweep(
matrix(c_x, nrow = nrow(x)), 2,
apply(
self$in_data, 1,
self$u_sigma), "*"), 1,
apply(x, 1, self$u_sigma), "*")
c_xp <- sweep(
sweep(
matrix(c_xp, nrow = nrow(xp)), 2,
apply(
self$in_data, 1,
self$u_sigma), "*"), 1, apply(xp, 1, self$u_sigma), "*")
}
u_part <- u_part -
rowSums(
(c_x %*% (private$data_corrs - private$u_var_modifier)) * c_xp)
if (!all(private$beta_u_cov_modifier == 0)) {
bupart_x <- bupart_x -
private$beta_u_cov_modifier %*%
(private$design_matrix %*% bupart_x + t(c_x))
bupart_xp <- if(null_flag)
bupart_x
else
bupart_xp - private$beta_u_cov_modifier %*%
(private$design_matrix %*% bupart_xp + t(c_xp))
}
}
if (!all(bupart_x == 0)) {
if(is.null(nrow(g_x)))
bupart <- map_dbl(
point_seq,
~t(map_dbl(self$basis_f, exec, x[.,])) *
bupart_xp[.] +
t(bupart_x[.] * map_dbl(
self$basis_f, exec, xp[.,])))
else
bupart <- map_dbl(
point_seq,
~t(map_dbl(self$basis_f, exec, x[.,])) %*%
bupart_xp[,.] + t(bupart_x[,.] %*%
map_dbl(
self$basis_f, exec, xp[.,])))
}
else bupart <- 0
}
## I don't like this, but there's a lot of rounding error going on
out_val <- round(beta_part+u_part+bupart, 10)
if (self$em_type == "variance" && check_neg) {
x_chg <- data.frame(eval_funcs(
scale_input,
x, self$ranges,
forward = FALSE)) |> setNames(names(self$ranges))
exps <- self$get_exp(x_chg, check_neg = FALSE)
if (any(exps <= 0)) {
if (full)
warning(paste("Some values of predicted variance are negative.",
"Proceed with extreme caution."))
else {
which_neg <- which(exps <= 0)
relev_vals <- data.frame(m = exps[which_neg],
v = out_val[which_neg])
replace_vals <- apply(
relev_vals, 1,
function(x) get_truncation(x[[1]], x[[2]], FALSE))
for (i in seq_along(replace_vals)) {
out_val[which_neg[i]] <- replace_vals[[i]]
}
}
}
}
out_val[out_val < 0] <- 1e-6
return(out_val)
},
implausibility = function(x, z, cutoff = NULL) {
if (is.null(nrow(x))) x <- setNames(
data.frame(matrix(x, ncol = 1)), names(self$ranges)
)
if (nrow(x) > 2000) {
k <- ceiling(nrow(x)/2000)
m <- ceiling(nrow(x)/k)
s_df <- split(x, rep(1:k, each = m, length.out = nrow(x)))
return(unlist(
map(
s_df,
~self$implausibility(., z = z, cutoff = cutoff)),
use.names = FALSE))
}
temp_scale_x <- x[,names(self$ranges)[names(self$ranges) %in% names(x)]]
temp_scale_x <- eval_funcs(scale_input, temp_scale_x, self$ranges)
temp_scale_x <- data.matrix(temp_scale_x)
corr_x <- self$corr$get_corr(self$in_data, temp_scale_x, self$active_vars)
if (all(self$disc == 0)) {
if (!is.numeric(z) && !is.null(z$val))
self$disc$external <- 0.05 * z$val
else if (is.numeric(z)) self$disc$external <- 0.05 * mean(z)
}
disc_quad <- sum(map_dbl(self$disc, ~.^2))
if (!is.numeric(z) && !is.null(z$val)) {
imp_var <- self$get_cov(x, c_x = corr_x, c_xp = corr_x) + z$sigma^2 + disc_quad + self$s_diag(x, mean(self$samples))
#imp_var[imp_var < 0] <- 1e6
imp <- sqrt((z$val - self$get_exp(x, c_data = corr_x))^2/imp_var)
}
else {
pred <- self$get_exp(x, c_data = corr_x)
bound_check <- map_dbl(pred, function(y) {
if (y <= z[2] && y >= z[1]) return(0)
if (y < z[1]) return(-1)
if (y > z[2]) return(1)
})
which_compare <- map_dbl(bound_check, function(y) {
if (y < 1) return(z[1])
return(z[2])
})
uncerts <- self$get_cov(x, c_x = corr_x, c_xp = corr_x) + disc_quad + self$s_diag(x, mean(self$samples))
uncerts[uncerts <= 0] <- 0.0001
imp <- bound_check * (pred - which_compare)/sqrt(uncerts)
}
if (is.null(cutoff)) return(imp)
return(imp <= cutoff)
},
adjust = function(data, out_name) {
this_data_in <- data.matrix(
eval_funcs(
scale_input, data[,names(self$ranges)], self$ranges))
this_data_out <- data[,out_name]
if (all(eigen(self$beta_sigma)$values == 0)) {
new_beta_var <- self$beta_sigma
new_beta_exp <- self$beta_mu
}
else {
G <- apply(
this_data_in, 1,
function(x) map_dbl(self$basis_f, exec, x))
temp_in <- eval_funcs(
scale_input,
data.frame(this_data_in), self$ranges, FALSE)
sample_mod <- map_dbl(
seq_len(nrow(temp_in)),
~self$s_diag(temp_in[.,], self$samples[.]))
Ot <- self$corr$get_corr(this_data_in,
actives = self$active_vars) +
diag(sample_mod, nrow = nrow(this_data_in))
O <- tryCatch(
chol2inv(chol(Ot)),
error = function(x) {
ginv(Ot)
}
)
siginv <- tryCatch(
chol2inv(chol(self$beta_sigma)),
error = function(e) {
ginv(self$beta_sigma)
}
)
new_beta_var <- tryCatch(
chol2inv(chol(G %*% O %*% (if(is.null(nrow(G))) G else t(G)) + siginv)),
error = function(e) {
ginv(G %*% O %*% (if(is.null(nrow(G))) G else t(G)) + siginv)
}
)
new_beta_exp <- new_beta_var %*%
(siginv %*% self$beta_mu + G %*% O %*% this_data_out)
}
new_em <- HierarchicalEmulator$new(self$basis_f,
beta = list(mu = new_beta_exp,
sigma = new_beta_var),
u = list(sigma = self$u_sigma, corr = self$corr),
ranges = self$ranges,
data = data[, c(names(self$ranges), out_name)],
original_em = self, out_name = out_name,
model = self$model, a_vars = self$active_vars,
s_diag = self$s_diag, discs = self$disc,
samples = self$samples,
multiplier = self$multiplier)
new_em$em_type <- self$em_type
return(new_em)
},
set_sigma = function(sigma) {
if (is.null(self$o_em)) {
new_em <- self$clone()
new_em$u_sigma <- sigma
return(new_em)
}
new_o_em <- self$o_em$clone()
new_o_em$u_sigma <- sigma
dat <- setNames(
data.frame(
cbind(
eval_funcs(
scale_input,
data.frame(self$in_data),
self$ranges, FALSE),
self$out_data)),
c(names(self$ranges),
self$output_name))
return(new_o_em$adjust(dat, self$output_name))
},
mult_sigma = function(m) {
if (is.null(self$o_em)) {
new_em <- self$clone()
new_em$multiplier <- new_em$multiplier * m
return(new_em)
}
new_o_em <- self$o_em$clone()
new_o_em$multiplier <- new_o_em$multiplier * m
dat <- setNames(
data.frame(
cbind(
eval_funcs(
scale_input,
data.frame(self$in_data),
self$ranges, FALSE),
self$out_data)),
c(names(self$ranges),
self$output_name))
return(new_o_em$adjust(dat, self$output_name))
},
set_hyperparams = function(hp, nugget = self$corr$nugget) {
current_u <- self$corr
if (all(names(current_u$hyper_p) != names(hp)))
stop("Hyperparameter specification does not match current correlation function.")
if (is.null(self$o_em)) {
new_em <- self$clone()
new_em$corr <- new_em$corr$set_hyper_p(hp, nugget)
return(new_em)
}
new_o_em <- self$o_em$clone()
new_o_em$corr <- new_o_em$corr$set_hyper_p(hp, nugget)
dat <- setNames(
data.frame(
cbind(
eval_funcs(
scale_input,
data.frame(self$in_data), self$ranges, FALSE),
self$out_data)),
c(names(self$ranges),
self$output_name))
return(new_o_em$adjust(dat, self$output_name))
},
print = function(...) {
cat("Parameters and ranges: ",
paste(names(self$ranges),
paste0(map(self$ranges, round, 4)),
sep = ": ", collapse = ": "), "\n")
cat("Specifications: \n")
if (!is.null(self$model))
cat("\t Basis functions: ",
paste0(names(self$model$coefficients), collapse="; "), "\n")
else if (!is.null(self$o_em$model))
cat("\t Basis Functions: ",
paste0(names(self$o_em$model$coefficients),
collapse="; "), "\n")
else
cat("\t Basis functions: ",
paste0(map_chr(
self$basis_f, function_to_names, names(self$ranges), FALSE),
collapse = "; "), "\n")
cat("\t Active variables",
paste0(names(self$ranges)[self$active_vars], collapse = "; "), "\n")
cat("\t Regression Surface Expectation: ",
paste(round(self$beta_mu, 4), collapse = "; "), "\n")
cat("\t Regression surface Variance (eigenvalues): ",
paste(round(eigen(self$beta_sigma)$values, 4), collapse = "; "), "\n")
cat("Correlation Structure: \n")
if (!is.null(private$data_corrs))
cat("Bayes-adjusted emulator - prior specifications listed. \n")
cat("\t Variance (Representative): ",
if (is.numeric(self$u_sigma))
self$u_sigma^2
else
self$u_sigma(map_dbl(self$ranges, mean))^2, "\n")
cat("\t Expectation: ", self$u_mu(rep(0, length(ranges))), "\n")
self$corr$print(prepend = "\t")
cat("Mixed covariance: ", self$beta_u_cov(rep(0, length(ranges))), "\n")
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.