get_deriv_info <- function(em, x, var = FALSE, ...) {
deriv_exp <- map_dbl(names(em$ranges),
function(y) em$get_exp_d(x, p = y, ...))
if (var) {
deriv_var <- matrix(
unlist
(map(names(em$ranges),
function(a)
map_dbl(names(em$ranges),
function(b)
em$get_cov_d(x, p1 = a, p2 = b, ...)))),
nrow = length(em$ranges), byrow = TRUE)
return(list(exp = deriv_exp, var = deriv_var))
}
return(list(exp = deriv_exp))
}
#' Derivative inner product
#'
#' Find the (uncertainty modified) inner product between the derivative at a point \code{x}
#' and a proposed direction \code{v}.
#'
#' Given a point \code{x} and a direction \code{v}, we find the overlap between E[f'(x)] and
#' \code{v}. The emulated derivative has uncertainty associated with it: the variance is taken
#' into account using \eqn{v^{T} Var[f'(x)] v}.
#'
#' If \code{sd == NULL}, then only the (normed) overlap between the derivative and the direction
#' vector is returned. Otherwise a pair of values are returned: these are the normed overlap plus
#' or minus \code{sd} times the uncertainty.
#'
#' This function is concerned with ascertaining whether a direction is oriented in the direction
#' of the emulator gradient, subject to the uncertainty around the estimate of the derivative.
#' It allows for a consideration of "emulated gradient descent".
#'
#' @param em The emulator in question
#' @param x The point in input space to evaluate at
#' @param v The direction to assess
#' @param sd How many standard deviations to consider.
#' @param ... Additional arguments to pass through (eg local.var to the emulator functions)
#'
#' @return Either a single numeric or a pair of numerics (see description)
#'
#' @export
#'
#' @examples
#' directional_deriv(SIREmulators$ems[[1]], SIRSample$validation[1,], c(1,1,1))
#'
directional_deriv <- function(em, x, v, sd = NULL, ...) {
normed_v <- v/sqrt(sum(v^2))
if (!is.null(sd))
deriv_info <- get_deriv_info(em, x, var = TRUE)
else
deriv_info <- get_deriv_info(em, x, ...)
normed_info <- deriv_info$exp/sqrt(sum(deriv_info$exp^2))
suitability <- normed_info %*% normed_v
if (is.null(sd)) return(suitability)
else {
uncertainty <- sqrt(normed_v %*% deriv_info$var %*% normed_v)
return(c(suitability - sd * uncertainty, suitability + sd * uncertainty))
}
}
#' Emulated Derivative Point Proposal
#'
#' Proposes a new point by applying `emulated gradient descent' on an existing point.
#'
#' Given a point (preferably close to the implausibility boundary) \code{x}, we can calculate
#' the emulated gradient at this point for each emulator. If the estimate of the expectation
#' at this point for a given emulator is larger than the target value, then we would like to
#' move in the direction of greatest decrease for this emulator, and conversely for an estimate
#' of the expectation that's smaller than the target value. The combination of this information
#' for every emulator under consideration defines a preferred set of directions of travel from
#' this point.
#'
#' We may try to find a shared direction which improves (or at least does not worsen) all
#' emulator evaluations. If a point is already well inside the implausibility boundary for a given
#' output (where `well inside' is defined by the value of \code{accept}), we may allow this
#' output to worsen in order to improve the others.
#'
#' Provided a shared direction, v, can be identified, we iteratively move in this direction. Define
#' the new proposed point x' = x + h*v, where h is a step-size given by \code{hstart}. Compare
#' the summary statistic (either expectational difference or implausibility) to that provided by
#' the original point; if the new point gives improvement, then continue to move in this direction
#' until no further improvement is possible for this step-size. The step-size is reduced (up to
#' a minimum of \code{hcutoff}) and the process is repeated. Only finitely many iteration steps
#' are permitted; this can be tuned by supplying a value of \code{iteration.steps}.
#'
#' @param ems The emulators to evaluate with respect to.
#' @param x The original point.
#' @param targets The list of emulator targets.
#' @param accept The implausibility below which we allow an output to worsen.
#' @param hstart The initial step size.
#' @param hcutoff The minimum allowed step size.
#' @param iteration.measure Either `exp' for expectation or `imp' for implausibility.
#' @param iteration.steps The number of allowed iterations.
#' @param nv The number of directions on the n-sphere to try.
#'
#' @return Either a new proposal point, or the original point if an improvement could not be found.
#' @export
#'
#' @examples
#' # Take a point from the SIR system at later waves with low (but >3) implausibility
#' start_point <- SIRMultiWaveData[[2]][90,1:3]
#' ems <- SIRMultiWaveEmulators[[3]]
#' targs <- SIREmulators$targets
#' # Using expected error as measure
#' new_point1 <- directional_proposal(ems, start_point, targs, iteration.steps = 50,
#' nv = 100)
#' # Using implausibility as measure
#' new_point2 <- directional_proposal(ems, start_point, targs, iteration.measure = 'imp',
#' iteration.steps = 50, nv = 100)
#' all_points <- do.call('rbind.data.frame', list(start_point, new_point1, new_point2))
#' nth_implausible(ems, all_points, targs)
#'
directional_proposal <- function(ems, x, targets, accept = 2, hstart = 1e-04,
hcutoff = 1e-09, iteration.measure = 'exp',
iteration.steps = 100, nv = 500) {
if (length(x) > length(ems[[1]]$ranges))
x <- x[,names(ems[[1]]$ranges)]
if (any(!names(targets) %in% map_chr(ems, ~.$output_name))) {
warning("Not all targets have a corresponding emulator.
Restricting to only emulated outputs.")
targets <- targets[names(targets) %in% map_chr(ems, ~.$output_name)]
}
point_implaus <- map_dbl(seq_along(ems),
~ems[[.]]$implausibility(x, z = targets[[.]]))
x_predict <- map_dbl(ems, ~.$get_exp(x))
is_bigger <- map_lgl(seq_along(targets), function(y) {
if (!is.numeric(targets[[y]]))
comparative <- targets[[y]]$val < x_predict[[y]]
else comparative <- targets[[y]][2] < x_predict[[y]]
})
x_diffs <- do.call('rbind', map(ems, ~get_deriv_info(., x)$exp))
x_dir <- do.call('rbind', map(seq_along(is_bigger), function(i) {
if(is_bigger[[i]])
return(-1*x_diffs[i,])
else
return(x_diffs[i,])}))
x_norms <- apply(x_dir, 1, function(y) sqrt(sum(y^2)))
x_dir <- sweep(x_dir, 1, x_norms, "/")
test_dirs <- runifs(nv*length(x), length(x))
suits <- apply(x_dir, 1, function(y) apply(test_dirs, 1, function(z) z %*% y))
suit_means <- apply(suits, 1, mean)
order_dirs <- test_dirs[order(suit_means, decreasing = TRUE),]
order_suits <- suits[order(suit_means, decreasing = TRUE),]
restrict_dirs <- order_dirs[apply(order_suits, 1,
function(y)
all(y >= 0 | point_implaus < accept)),]
nth_discrepancy <- function(ems, x, targets, n = 1) {
discs <- map_dbl(seq_along(ems), function(y) {
if (!is.numeric(targets[[y]]))
return(abs((ems[[y]]$get_exp(x) - targets[[y]]$val)/targets[[y]]$val))
else {
emval <- ems[[y]]$get_exp(x)
if (emval < targets[[y]][1])
return((targets[[y]][1]-emval)/targets[[y]][1])
if (emval > targets[[y]][2])
return((emval - targets[[y]][2])/targets[[y]][2])
return(0)
}
})
if (n==1) return(max(discs))
return(order(discs, decreasing = TRUE)[[n]])
}
if (nrow(restrict_dirs) == 0) {
warning("No direction improves the performance on the relevant targets.")
return(x)
}
range_dists <- map_dbl(ems[[1]]$ranges, ~diff(.)/2)
best_dir <- restrict_dirs[1,] * range_dists
track_measure <- if (iteration.measure == "exp")
nth_discrepancy(ems, x, targets) else max(point_implaus)
better_point <- NULL
attempts <- 0
gap <- 1e-04
index <- 1
while (attempts < iteration.steps) {
new_point <- x + gap * index * best_dir
new_measure <- if (iteration.measure == "exp")
nth_discrepancy(ems, new_point, targets)
else
nth_implausible(ems, new_point, targets)
if (new_measure < track_measure) {
better_point <- new_point
track_measure <- new_measure
index <- index + 1
}
else {
if (is.null(better_point) && gap > hcutoff) gap <- gap * 0.1
else break
}
attempts <- attempts + 1
}
if (is.null(better_point)) return(x)
return(better_point)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.