Description Usage Arguments Value Examples
Select soft power, the minimum number to get scale Free Topology Model Fit value (R2) larger than 0.85.
1 2 3 4 5 6 7 8 | WGCNA_softpower(
datExpr,
networkType = "signed",
saveplot = NULL,
maxPower = NULL,
RsquaredCut = 0.85,
...
)
|
networkType |
Default "signed". Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". Correlation and distance are transformed as follows:
and for type = "distance", adjacency = (1-(dist/max(dist))^2)^power. |
saveplot |
Save plot to given file "a.pdf", "b.png". |
maxPower |
Specify maximum power to check. Default 30 for "unsigned" network and 40 for other type. Any number less than 20 would be treated as 20. |
RsquaredCut |
R2 for defining scale-free network (default 0.85). Any number larger than 1 would be treated as 0.99. |
... |
Additional parameters given to plot output ( |
A list
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | df = generateAbundanceDF(nSample=30, nGrp=3, sd=5)
datExpr <- WGCNA_dataFilter(df)
datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr)
power <- WGCNA_softpower(datExpr)
#2
exprMat <- "test.file"
wgcnaL <- WGCNA_readindata(exprMat)
traitData <- 'trait.file'
wgcnaL <- WGCNA_readindata(exprMat, traitData)
datExpr <- wgcnaL$datExpr
WGCNA_dataCheck(datExpr)
datExpr <- WGCNA_dataFilter(datExpr)
datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr)
#datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr, traitColors=wgcnaL$traitColors)
power <- WGCNA_softpower(datExpr)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.