# Tests for differential abundance methods
test_that('differentialAbundance returns a correctly formatted data.table', {
df <- testOTU
counts <- round(df[, -c("entity.SampleID")]*1000) # make into "counts"
counts[ ,entity.SampleID:= df$entity.SampleID]
nSamples <- dim(df)[1]
testSampleMetadata <- data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = rep(c("binA_a", "binA_b"), nSamples/2, replace=T),
"entity.cat3" = rep(paste0("cat3_", letters[1:3]), nSamples/3, replace=T),
"entity.cat4" = rep(paste0("cat4_", letters[1:4]), nSamples/4, replace=T),
"entity.contA" = rnorm(nSamples, sd=5),
"entity.dateA" = sample(seq(as.Date('1988/01/01'), as.Date('2000/01/01'), by="day"), nSamples)
))
testData <- microbiomeComputations::AbsoluteAbundanceData(
data = counts,
sampleMetadata = SampleMetadata(
data = testSampleMetadata,
recordIdColumn = "entity.SampleID"
),
recordIdColumn = 'entity.SampleID')
# A Binary comparator variable
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'binA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="BINARY")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_a"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_b"
))
)
)
)
result <- differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', verbose=F)
expect_equal(length(result@droppedColumns), 182)
dt <- result@data
expect_equal(names(dt), c('SampleID'))
expect_s3_class(dt, 'data.table')
stats <- result@statistics@statistics
expect_s3_class(stats, 'data.frame')
expect_equal(result@statistics@effectSizeLabel, 'log2(Fold Change)')
expect_equal(names(stats), c('effectSize','pValue','adjustedPValue','pointID'))
expect_equal(unname(unlist(lapply(stats, class))), c('numeric','numeric','numeric','character'))
expect_true(all(!is.na(stats[, c('effectSize', 'pValue', 'pointID')])))
# When defined groups end up subsetting the incoming data
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'cat4',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CATEGORICAL")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="cat4_a"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="cat4_b"
))
)
)
)
result <- differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', verbose=F)
expect_equal(length(result@droppedColumns), 407)
dt <- result@data
expect_equal(names(dt), c('SampleID'))
expect_s3_class(dt, 'data.table')
expect_equal(sum(testSampleMetadata$entity.cat4 %in% c('cat4_a','cat4_b')), nrow(dt))
stats <- result@statistics@statistics
expect_s3_class(stats, 'data.frame')
expect_equal(result@statistics@effectSizeLabel, 'log2(Fold Change)')
expect_equal(names(stats), c('effectSize','pValue','adjustedPValue','pointID'))
expect_equal(unname(unlist(lapply(stats, class))), c('numeric','numeric','numeric','character'))
expect_true(all(!is.na(stats[, c('effectSize', 'pValue', 'pointID')])))
# With a continuous variable
bin1 <- veupathUtils::Bin(binStart='2', binEnd='3', binLabel="[2, 3)")
bin2 <- veupathUtils::Bin(binStart='3', binEnd='4', binLabel="[3, 4)")
bin3 <- veupathUtils::Bin(binStart='4', binEnd='5', binLabel="[4, 5)")
bin4 <- veupathUtils::Bin(binStart='5', binEnd='6', binLabel="[5, 6)")
groupABins <- veupathUtils::BinList(S4Vectors::SimpleList(c(bin1, bin2)))
groupBBins <- veupathUtils::BinList(S4Vectors::SimpleList(c(bin3, bin4)))
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'contA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CONTINUOUS")
),
groupA = groupABins,
groupB = groupBBins
)
result <- differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', verbose=F)
dt <- result@data
expect_equal(names(dt), c('SampleID'))
expect_s3_class(dt, 'data.table')
expect_equal(nrow(dt), sum((testSampleMetadata[['entity.contA']] >= 2) * (testSampleMetadata[['entity.contA']] < 6)))
stats <- result@statistics@statistics
expect_s3_class(stats, 'data.frame')
expect_equal(result@statistics@effectSizeLabel, 'log2(Fold Change)')
expect_equal(names(stats), c('effectSize','pValue','adjustedPValue','pointID'))
expect_equal(unname(unlist(lapply(stats, class))), c('numeric','numeric','numeric','character'))
## With dates
bin1 <- Bin(binStart=as.Date('1989-01-01'), binEnd=as.Date('1990-01-01'), binLabel='1989')
bin2 <- Bin(binStart=as.Date('1990-01-01'), binEnd=as.Date('1991-01-01'), binLabel='1990')
bin3 <- Bin(binStart=as.Date('1991-01-01'), binEnd=as.Date('1992-01-01'), binLabel='1991')
bin4 <- Bin(binStart=as.Date('1992-01-01'), binEnd=as.Date('1993-01-01'), binLabel='1992')
groupABins <- BinList(S4Vectors::SimpleList(c(bin1, bin2)))
groupBBins <- BinList(S4Vectors::SimpleList(c(bin3, bin4)))
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'dateA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CONTINUOUS")
),
groupA = groupABins,
groupB = groupBBins
)
result <- differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', verbose=F)
dt <- result@data
expect_equal(names(dt), c('SampleID'))
expect_s3_class(dt, 'data.table')
expect_equal(nrow(dt), sum((testSampleMetadata[['entity.dateA']] >= as.Date('1989-01-01')) * (testSampleMetadata[['entity.dateA']] < as.Date('1993-01-01'))))
stats <- result@statistics@statistics
expect_s3_class(stats, 'data.frame')
expect_equal(result@statistics@effectSizeLabel, 'log2(Fold Change)')
expect_equal(names(stats), c('effectSize','pValue','adjustedPValue','pointID'))
expect_equal(unname(unlist(lapply(stats, class))), c('numeric','numeric','numeric','character'))
})
test_that("differentialAbundance can handle messy inputs", {
df <- testOTU
counts <- round(df[, -c("entity.SampleID")]*1000) # make into "counts"
counts[ ,entity.SampleID:= df$entity.SampleID]
nSamples <- dim(df)[1]
testSampleMetadataMessy <- data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = rep(c("binA_a", "binA_b"), nSamples/2, replace=T),
"entity.cat3" = rep(paste0("cat3_", letters[1:3]), nSamples/3, replace=T),
"entity.cat4" = rep(paste0("cat4_", letters[1:4]), nSamples/4, replace=T),
"entity.contA" = rnorm(nSamples, sd=5),
"entity.dateA" = sample(seq(as.Date('1988/01/01'), as.Date('2000/01/01'), by="day"), nSamples)
))
testSampleMetadataMessy$entity.contA[sample(1:nSamples, 50)] <- NA
testSampleMetadataMessy$entity.cat4[sample(1:nSamples, 50)] <- NA
testDataMessy <- microbiomeComputations::AbsoluteAbundanceData(
data = counts,
sampleMetadata = SampleMetadata(
data = testSampleMetadataMessy,
recordIdColumn = "entity.SampleID"
),
recordIdColumn = 'entity.SampleID')
# With only some comparisonVariable values found in the metadata
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'cat4',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CATEGORICAL")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="cat4_a"
), veupathUtils::Bin(
binLabel="cat4_c"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="cat4_b"
), veupathUtils::Bin(
binLabel="test"
))
)
)
)
result <- differentialAbundance(testDataMessy, comparator=comparatorVariable, method='DESeq', verbose=F)
dt <- result@data
expect_equal(names(dt), c('SampleID'))
expect_s3_class(dt, 'data.table')
expect_equal(sum(testSampleMetadataMessy$entity.cat4 %in% c('cat4_a','cat4_b','cat4_c')), nrow(dt))
stats <- result@statistics@statistics
expect_s3_class(stats, 'data.frame')
expect_equal(result@statistics@effectSizeLabel, 'log2(Fold Change)')
expect_equal(names(stats), c('effectSize','pValue','adjustedPValue','pointID'))
expect_equal(unname(unlist(lapply(stats, class))), c('numeric','numeric','numeric','character'))
expect_true(all(!is.na(stats[, c('effectSize', 'pValue', 'pointID')])))
# With a continuous variable that has NAs
bin1 <- veupathUtils::Bin(binStart='2', binEnd='3', binLabel="[2, 3)")
bin2 <- veupathUtils::Bin(binStart='3', binEnd='4', binLabel="[3, 4)")
bin3 <- veupathUtils::Bin(binStart='4', binEnd='5', binLabel="[4, 5)")
bin4 <- veupathUtils::Bin(binStart='5', binEnd='6', binLabel="[5, 6)")
groupABins <- veupathUtils::BinList(S4Vectors::SimpleList(c(bin1, bin2)))
groupBBins <- veupathUtils::BinList(S4Vectors::SimpleList(c(bin3, bin4)))
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'contA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CONTINUOUS")
),
groupA = groupABins,
groupB = groupBBins
)
result <- differentialAbundance(testDataMessy, comparator=comparatorVariable, method='DESeq', verbose=F)
dt <- result@data
expect_equal(names(dt), c('SampleID'))
expect_s3_class(dt, 'data.table')
expect_equal(nrow(dt), sum((testSampleMetadataMessy[['entity.contA']] >= 2) * (testSampleMetadataMessy[['entity.contA']] < 6), na.rm=T))
stats <- result@statistics@statistics
expect_s3_class(stats, 'data.frame')
expect_equal(result@statistics@effectSizeLabel, 'log2(Fold Change)')
expect_equal(names(stats), c('effectSize','pValue','adjustedPValue','pointID'))
expect_equal(unname(unlist(lapply(stats, class))), c('numeric','numeric','numeric','character'))
# With a categorical variable that has NAs
bin1 <- veupathUtils::Bin(binLabel="cat4_a")
bin2 <- veupathUtils::Bin(binLabel="cat4_b")
bin3 <- veupathUtils::Bin(binLabel="cat4_c")
groupABins <- veupathUtils::BinList(S4Vectors::SimpleList(c(bin1, bin2)))
groupBBins <- veupathUtils::BinList(S4Vectors::SimpleList(c(bin3)))
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'cat4',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CATEGORICAL")
),
groupA = groupABins,
groupB = groupBBins
)
result <- differentialAbundance(testDataMessy, comparator=comparatorVariable, method='DESeq', verbose=T)
dt <- result@data
expect_equal(names(dt), c('SampleID'))
expect_s3_class(dt, 'data.table')
expect_equal(nrow(dt), sum(testSampleMetadataMessy$entity.cat4 %in% c('cat4_a','cat4_b','cat4_c')))
stats <- result@statistics@statistics
expect_s3_class(stats, 'data.frame')
expect_equal(result@statistics@effectSizeLabel, 'log2(Fold Change)')
expect_equal(names(stats), c('effectSize','pValue','adjustedPValue','pointID'))
expect_equal(unname(unlist(lapply(stats, class))), c('numeric','numeric','numeric','character'))
})
test_that("differentialAbundance returns a ComputeResult with the correct slots" , {
df <- testOTU
counts <- round(df[, -c("entity.SampleID")]*1000) # make into "counts"
counts[ ,entity.SampleID:= df$entity.SampleID]
nSamples <- dim(df)[1]
sampleMetadata <- SampleMetadata(
data = data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = sample(c("binA_a", "binA_b"), nSamples, replace=T),
"entity.cat2" = sample(c("cat2_a", "cat2_b"), nSamples, replace=T),
"entity.cat3" = sample(paste0("cat3_", letters[1:3]), nSamples, replace=T),
"entity.cat4" = sample(paste0("cat4_", letters[1:4]), nSamples, replace=T)
)),
recordIdColumn = "entity.SampleID"
)
testData <- microbiomeComputations::AbsoluteAbundanceData(
data = counts,
sampleMetadata = sampleMetadata,
recordIdColumn = 'entity.SampleID')
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'binA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="BINARY")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_a"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_b"
))
)
)
)
result <- differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', verbose=F)
expect_equal(result@parameters, 'recordIdColumn = entity.SampleID, comparatorColName = entity.binA, method = DESeq, groupA =binA_a, groupB = binA_b')
expect_equal(result@recordIdColumn, 'entity.SampleID')
expect_equal(class(result@droppedColumns), 'character')
})
test_that("differentialAbundance fails with improper inputs", {
df <- testOTU
counts <- round(df[, -c("entity.SampleID")]*1000) # make into "counts"
counts[ ,entity.SampleID:= df$entity.SampleID]
nSamples <- dim(df)[1]
sampleMetadata <- SampleMetadata(
data = data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = sample(c("binA_a", "binA_b"), nSamples, replace=T),
"entity.cat2" = sample(c("cat2_a", "cat2_b"), nSamples, replace=T),
"entity.cat3" = sample(paste0("cat3_", letters[1:3]), nSamples, replace=T),
"entity.cat4" = sample(paste0("cat4_", letters[1:4]), nSamples, replace=T),
"entity.contA" = rnorm(nSamples, sd=5)
)),
recordIdColumn = "entity.SampleID"
)
testData <- microbiomeComputations::AbsoluteAbundanceData(
data = counts,
sampleMetadata = sampleMetadata,
recordIdColumn = 'entity.SampleID')
# Fail when bins in Group A and Group B overlap
bin1 <- veupathUtils::Bin(binStart=2, binEnd=3, binLabel="[2, 3)")
bin2 <- veupathUtils::Bin(binStart=3, binEnd=4, binLabel="[3, 4)")
bin3 <- veupathUtils::Bin(binStart=3, binEnd=5, binLabel="[3, 5)")
bin4 <- veupathUtils::Bin(binStart=5, binEnd=6, binLabel="[5, 6)")
groupABins <- BinList(S4Vectors::SimpleList(c(bin1, bin2)))
groupBBins <- BinList(S4Vectors::SimpleList(c(bin3, bin4)))
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'contA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CONTINUOUS")
),
groupA = groupABins,
groupB = groupBBins
)
expect_error(differentialAbundance(testData, comparator=comparisonVariable, method='DESeq', verbose=F))
})
test_that("differentialAbundance catches deseq errors", {
df <- testOTU
counts <- round(df[, -c("entity.SampleID")]*1000) # make into "counts"
counts[ ,entity.SampleID:= df$entity.SampleID]
nSamples <- dim(df)[1]
sampleMetadata <- SampleMetadata(
data = data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = rep(c("binA_a", "binA_b"), nSamples/2, replace=T)
)),
recordIdColumn ="entity.SampleID"
)
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'binA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="BINARY")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_a"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_b"
))
)
)
)
# Use only a few taxa
testData <- microbiomeComputations::AbsoluteAbundanceData(
data = counts[, c("entity.SampleID","entity.1174-901-12","entity.A2")],
sampleMetadata = sampleMetadata,
recordIdColumn = 'entity.SampleID')
expect_error(differentialAbundance(testData, comparator=comparisonVariable, method='DESeq', verbose=T))
})
test_that("differentialAbundance method Maaslin does stuff",{
df <- testOTU
counts <- round(df[, -c("entity.SampleID")]*1000)
counts[ ,entity.SampleID:= df$entity.SampleID]
nSamples <- dim(df)[1]
testSampleMetadata <- SampleMetadata(
data = data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = rep(c("binA_a", "binA_b"), nSamples/2, replace=T),
"entity.cat3" = rep(paste0("cat3_", letters[1:3]), nSamples/3, replace=T),
"entity.cat4" = rep(paste0("cat4_", letters[1:4]), nSamples/4, replace=T),
"entity.contA" = rnorm(nSamples, sd=5)
)),
recordIdColumn ="entity.SampleID"
)
testCountsData <- microbiomeComputations::AbsoluteAbundanceData(
data = counts,
sampleMetadata = testSampleMetadata,
recordIdColumn = 'entity.SampleID')
testData <- microbiomeComputations::AbundanceData(
data = df,
sampleMetadata = testSampleMetadata,
recordIdColumn = 'entity.SampleID'
)
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'cat4',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CATEGORICAL")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="cat4_a"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="cat4_b"
))
)
)
)
result <- differentialAbundance(testData,
comparator = comparatorVariable,
method='Maaslin',
verbose=F)
dt <- result@data
stats <- result@statistics@statistics
resultCounts <- differentialAbundance(testCountsData,
comparator = comparatorVariable,
method='Maaslin',
verbose=F)
dtCounts <- result@data
statsCounts <- result@statistics@statistics
expect_equal(dt, dtCounts)
expect_equal(result@statistics@effectSizeLabel, 'Model Coefficient (Effect Size)')
expect_true(length(stats$pointID) > 0)
expect_true(length(statsCounts$pointID) > 0)
expect_equal(stats, statsCounts)
})
test_that("toJSON for DifferentialAbundanceResult works",{
df <- testOTU
nSamples <- dim(df)[1]
df$entity.wowtaxa <- rep(c(0.01, 0.99), nSamples/2, replace=T) # will 'wow' us with its significance
nSamples <- dim(df)[1]
testSampleMetadata <- data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = rep(c("binA_a", "binA_b"), nSamples/2, replace=T)
))
testData <- microbiomeComputations::AbundanceData(
data = df,
sampleMetadata = SampleMetadata(
data = testSampleMetadata,
recordIdColumn = "entity.SampleID"
),
recordIdColumn = 'entity.SampleID'
)
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'binA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="CATEGORICAL")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_a"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_b"
))
)
)
)
result <- differentialAbundance(testData,
comparator = comparatorVariable,
method='Maaslin',
verbose=F)
stats <- result@statistics
jsonList <- jsonlite::fromJSON(toJSON(result@statistics))
expect_true(all(c('effectSizeLabel', 'statistics', 'pValueFloor', 'adjustedPValueFloor') %in% names(jsonList)))
expect_true(all(c('effectSize', 'pValue', 'adjustedPValue', 'pointID') %in% names(jsonList$statistics)))
expect_true(is.character(jsonList$statistics$effectSize))
expect_true(is.character(jsonList$statistics$pValue))
expect_true(is.character(jsonList$statistics$adjustedPValue))
expect_true(is.character(jsonList$pValueFloor))
expect_true(is.character(jsonList$adjustedPValueFloor))
})
test_that("The smallest pvalue we can get is our p value floor", {
df <- testOTU
counts <- round(df[, -c("entity.SampleID")]*1000) # make into "counts"
counts[ ,entity.SampleID:= df$entity.SampleID]
nSamples <- dim(df)[1]
counts$entity.wowtaxa <- rep(c(1, 100), nSamples/2, replace=T) # will 'wow' us with its significance
nSamples <- dim(df)[1]
testSampleMetadata <- data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = rep(c("binA_a", "binA_b"), nSamples/2, replace=T)
))
testData <- microbiomeComputations::AbsoluteAbundanceData(
data = counts,
sampleMetadata = SampleMetadata(
data = testSampleMetadata,
recordIdColumn = "entity.SampleID"
),
recordIdColumn = 'entity.SampleID'
)
# A Binary comparator variable
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'binA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="BINARY")
),
groupA = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_a"
))
)
),
groupB = veupathUtils::BinList(
S4Vectors::SimpleList(
c(veupathUtils::Bin(
binLabel="binA_b"
))
)
)
)
# Try with different p value floors
result <- differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', pValueFloor = 0, verbose=F)
expect_equal(min(result@statistics@statistics$pValue), 0)
expect_equal(min(result@statistics@statistics$adjustedPValue, na.rm=T), 0) # Confirmed NAs are for pvalue=1
result <- differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', pValueFloor = P_VALUE_FLOOR, verbose=F)
expect_equal(min(result@statistics@statistics$pValue), P_VALUE_FLOOR)
expect_equal(min(result@statistics@statistics$adjustedPValue, na.rm=T), result@statistics@adjustedPValueFloor) # Confirmed NAs are for pvalue=1
# Repeat with Maaslin
result <- differentialAbundance(testData, comparator=comparatorVariable, method='Maaslin', pValueFloor = 0, verbose=F)
expect_equal(min(result@statistics@statistics$pValue), 0)
expect_equal(min(result@statistics@statistics$adjustedPValue), 0)
result <- differentialAbundance(testData, comparator=comparatorVariable, method='Maaslin', pValueFloor = P_VALUE_FLOOR, verbose=F)
expect_equal(min(result@statistics@statistics$pValue), P_VALUE_FLOOR)
expect_equal(min(result@statistics@statistics$adjustedPValue), result@statistics@adjustedPValueFloor)
})
test_that("differentialAbundance fails if comparator has one value", {
df <- testOTU
sampleMetadata <- SampleMetadata(
data = data.frame(list(
"entity.SampleID" = df[["entity.SampleID"]],
"entity.binA" = rep(c("binA"), nrow(df))
)),
recordIdColumn ="entity.SampleID"
)
testData <- microbiomeComputations::AbundanceData(
data = df,
sampleMetadata = sampleMetadata,
recordIdColumn = 'entity.SampleID'
)
comparatorVariable <- microbiomeComputations::Comparator(
variable = veupathUtils::VariableMetadata(
variableSpec = VariableSpec(
variableId = 'binA',
entityId = 'entity'
),
dataShape = veupathUtils::DataShape(value="BINARY")
),
groupA = veupathUtils::BinList(S4Vectors::SimpleList(c(veupathUtils::Bin(binLabel="binA")))),
groupB = veupathUtils::BinList(S4Vectors::SimpleList(c(veupathUtils::Bin(binLabel="binB"))))
)
expect_error(differentialAbundance(testData, comparator=comparatorVariable, method='DESeq', verbose=F))
expect_error(differentialAbundance(testData, comparator=comparatorVariable, method='Maaslin', verbose=F))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.