ggtoppt <- function(gg, export = FALSE, pptname = "exportedplots.pptx", width = 8, height = 6){
require(rvg)
require(officer)
if(export == FALSE){
if(class(gg)[1] == "gg"){
if(exists("filename")){
filename <- add_slide(filename, layout = "Title and Content", master = "Office Theme")
filename <- ph_with(filename, dml(ggobj = gg), location = ph_location(width = width, height = height))
}else{
filename <- read_pptx()
filename <- add_slide(filename, layout = "Title and Content", master = "Office Theme")
filename <- ph_with(filename, dml(ggobj = gg), location = ph_location(width = width, height = height))
filename <<- filename
}
}else if(class(gg)[1] == "function"){
if(exists("filename")){
filename <- add_slide(filename, layout = "Title and Content", master = "Office Theme")
filename <- ph_with(filename, dml(gg()), location = ph_location(width = width, height = height))
}else{
filename <- read_pptx()
filename <- add_slide(filename, layout = "Title and Content", master = "Office Theme")
filename <- ph_with(filename, dml(gg()), location = ph_location(width = width, height = height))
filename <<- filename
}
}else if(class(gg)[1] == "ggsurvplot"){
if(exists("filename")){
filename <- add_slide(filename, layout = "Title and Content", master = "Office Theme")
filename <- ph_with(filename, dml(code = print(gg, newpage = FALSE)), location = ph_location(width = width, height = height))
}else{
filename <- read_pptx()
filename <- add_slide(filename, layout = "Title and Content", master = "Office Theme")
filename <- ph_with(filename,dml(code = print(gg, newpage = FALSE)), location = ph_location(width = width, height = height))
filename <<- filename
}
}else{
print("Check class")
}
}else{
print(filename, target = pptname)
}
}
fptable <- function(columna, var_name = "Variable", caption = "", na = TRUE, format = "markdown", digits = 3){
require(knitr)
if(na == TRUE){
# Creo op.table, que contiene un table() de la variable ----
op.table <- as.data.frame(table(columna, useNA = "always"))
# Anado a op.table las proporciones de cada valor, redondeadas a digits. ----
op.table$prop <- (round(prop.table(table(columna, useNA = "always")),digits)*100)
}
if(na == FALSE){
# Creo op.table, que contiene un table() de la variable ----
op.table <- as.data.frame(table(columna))
# Anado a op.table las proporciones de cada valor, redondeadas a 3. ----
op.table$prop <- (round(prop.table(table(columna)),digits)*100)
}
# Creo una fila nueva en blanco al final de op.table ----
auxdt <- matrix(c(op.table[2,1],1,1),nrow = 1,ncol = 3) # Creo una matriz con tres filas y una sola columna, la primera celda sera el segundo valor de la primera columna, para que no se queje de que no es un factor.
colnames(auxdt) <- colnames(op.table) # le pongo los mismos colnames que op.table para que no proteste
op.table[,1] <- as.character(op.table[,1])
op.table <- rbind(op.table, auxdt) # las junto, ahora ya tengo la fila nueva en "blanco".
#op.table[,1] <- as.character(op.table[,1]) # Si no, no admite que le ponga "TOTAL"
colnames(op.table) <- c("Variable", "Frecuencia", "Proporcion")
op.table[nrow(op.table),1] <- "TOTAL" # Le digo que el ultimo valor de esta columna se llame TOTAL
op.table$Frecuencia <- as.numeric(op.table$Frecuencia) # Para que lo alinee al lado que es.
op.table$Frecuencia[nrow(op.table)] <- sum(op.table$Frecuencia[1:(nrow(op.table)-1)]) # Suma de las frecuencias
op.table$Proporcion[nrow(op.table)] <- (round(sum(round(prop.table(table(columna)),7)),digits)*100) # Suma de las proporciones
#op.table$Proporcion <- as.numeric(op.table$Proporcion) # a numerico???
colnames(op.table) <- c(var_name, "Freq.", "%")
kable(op.table, caption = caption, format = format)
}
ortable <- function(m1, nvar){
if(class(m1)[1] == "coxph") {
m1 <- summary(m1)
table1 <- round(m1$conf.int,4)
table1 <- cbind(table1, coef(m1)[,5])
colnames(table1) <- c("HazardRatio", "Inv.HazardRatio", "Limite.inf.", "Limite.sup.", "p.value")
return(table1)
}else if(class(m1)[1] == "glm"){
OR <- exp(summary(m1)$coefficients[1:(nvar+1),1])
`Limite.sup.` <- exp(summary(m1)$coefficients[1:(nvar+1),1]+1.96*summary(m1)$coefficients[1:(nvar+1),2])
`Limite.inf.` <- exp(summary(m1)$coefficients[1:(nvar+1),1]-1.96*summary(m1)$coefficients[1:(nvar+1),2])
`p.valor` <- summary(m1)$coefficients[,4]
AIC <- summary(m1)$aic
sum1 <- round(cbind(`Limite.inf.`, OR, `Limite.sup.`, `p.valor`, AIC),3)
sum1 <- as.data.frame(sum1)
sum1 <- sum1[-1,]
return(sum1)
}else{
print("The model you entered is not a survival model nor glm model")
}
}
ssummary <- function(columna, var_name = "Variable", caption = "", decimals = 2, formato = "markdown", na = TRUE){
require(knitr)
if(any(is.na(columna)) == TRUE){
aux <- round(summary(columna, useNA = "always"),3)
aux <- as.factor(aux)
aux <- as.data.frame(aux, names(aux))
aux$aux <- round(as.numeric(summary(columna)),decimals)
sd <- sd(columna, na.rm = TRUE)
sd <- data.frame(aux = round(sd,decimals))
aux <- rbind(aux, sd)
rownames(aux)[8] <- "SD"
aux1 <- rbind(aux[1,],aux[2,],aux[3,],aux[5,],aux[6,],aux[4,],aux[8,],aux[7,])
rownames(aux1) <- c("Min.", "1st Qu.", "Median", "3rd Qu.", "Max.", "Mean", "SD", "NA")
# kable(aux1, caption = caption, col.names = var_name, format = formato)
}else if(any(!is.na(columna)) == TRUE | na == FALSE){
aux <- round(summary(columna),3)
aux <- as.factor(aux)
aux <- as.data.frame(aux, names(aux))
aux$aux <- round(as.numeric(summary(columna)),decimals)
sd <- round(sd(columna), decimals)
sd <- data.frame(aux = sd)
aux <- rbind(aux, sd)
aux1 <- rbind(aux[1,],aux[2,],aux[3,],aux[5,],aux[6,],aux[4,],aux[7,])
rownames(aux1) <- c("Min.", "1st Qu.", "Median", "3rd Qu.", "Max.", "Mean", "SD")
}
kable(aux1, caption = caption, col.names = var_name, format = formato)
}
vcol <- function(datos, ver = FALSE){
if(ver){
View(as.data.frame(colnames(datos)))
}else if(ver == FALSE){
data.frame(ColNames = colnames(datos), N = c(1:length(colnames(datos))))
}
}
spsstoR <- function(columna, as.Date = TRUE){
columna <- ISOdate(1582,10,14) + columna
columna <- as.Date(columna)
return(columna)
}
crl_ga_eq <- function(){
noquote("23.73+8.052*(1.037*dd$crl)^0.5")
}
#
crl_ga <- function(crl){
23.73+8.052*(1.037*crl)^0.5
}
coalesce_join <- function(x, y,
by = NULL, suffix = c(".x", ".y"),
join = dplyr::full_join, ...) {
# Source: https://alistaire.rbind.io/blog/coalescing-joins/
joined <- join(x, y, by = by, suffix = suffix, ...)
# names of desired output
cols <- union(names(x), names(y))
to_coalesce <- names(joined)[!names(joined) %in% cols]
suffix_used <- suffix[ifelse(endsWith(to_coalesce, suffix[1]), 1, 2)]
# remove suffixes and deduplicate
to_coalesce <- unique(substr(
to_coalesce,
1,
nchar(to_coalesce) - nchar(suffix_used)
))
coalesced <- purrr::map_dfc(to_coalesce, ~dplyr::coalesce(
joined[[paste0(.x, suffix[1])]],
joined[[paste0(.x, suffix[2])]]
))
names(coalesced) <- to_coalesce
dplyr::bind_cols(joined, coalesced)[cols]
}
plot_coefs1 <- function (..., ci_level = 0.95, inner_ci_level = NULL, model.names = NULL,
coefs = NULL, omit.coefs = c("(Intercept)", "Intercept"),
colors = "CUD Bright", plot.distributions = FALSE, rescale.distributions = FALSE,
exp = FALSE, point.shape = TRUE, point.size = 3, legend.title = "Model",
groups = NULL, facet.rows = NULL, facet.cols = NULL, facet.label.pos = "top",
color.class = colors, resp = NULL, dpar = NULL)
{
if (!requireNamespace("broom", quietly = TRUE)) {
stop_wrap("Install the broom package to use the plot_coefs function.")
}
if (!requireNamespace("ggstance", quietly = TRUE)) {
stop_wrap("Install the ggstance package to use the plot_coefs function.")
}
if (!all(color.class == colors))
colors <- color.class
model <- term <- estimate <- conf.low <- conf.high <- conf.low.inner <- conf.high.inner <- curve <- est <- NULL
dots <- list(...)
if (inherits(dots[[1]], "list")) {
mods <- dots[[1]]
if (is.null(model.names) && !is.null(names(mods))) {
if (is.null(model.names))
model.names <- names(mods)
}
if (length(dots) > 1) {
ex_args <- dots[-1]
}
else {
ex_args <- NULL
}
}
else if (!is.null(names(dots))) {
if (all(nchar(names(dots))) > 0) {
models <- !is.na(sapply(dots, function(x) {
out <- find_S3_class("tidy", x, package = "generics")
if (out %in% c("list", "character", "logical",
"numeric", "default")) {
out <- NA
}
}))
mods <- dots[models]
if (is.null(model.names))
model.names <- names(dots)[models]
if (!all(models)) {
ex_args <- dots[models]
}
else {
ex_args <- NULL
}
}
else {
mods <- dots[names(dots) == ""]
ex_args <- dots[names(dots) != ""]
}
}
else {
mods <- dots
ex_args <- NULL
}
if (!is.null(omit.coefs) && !is.null(coefs)) {
if (any(omit.coefs %nin% c("(Intercept)", "Intercept"))) {
msg_wrap("coefs argument overrides omit.coefs argument. Displaying\n coefficients listed in coefs argument.")
}
omit.coefs <- NULL
}
if (!is.null(model.names)) {
names(mods) <- model.names
}
tidies <- make_tidies(mods = mods, ex_args = ex_args, ci_level = ci_level,
model.names = model.names, omit.coefs = omit.coefs, coefs = coefs,
resp = resp, dpar = dpar)
print(tidies)
n_models <- length(unique(tidies$model))
if (!is.null(inner_ci_level)) {
if (plot.distributions == FALSE || n_models == 1) {
tidies_inner <- make_tidies(mods = mods, ex_args = ex_args,
ci_level = inner_ci_level, model.names = model.names,
omit.coefs = omit.coefs, coefs = coefs)
tidies_inner$conf.low.inner <- tidies_inner$conf.low
tidies_inner$conf.high.inner <- tidies_inner$conf.high
tidies_inner <- tidies_inner[names(tidies_inner) %nin%
c("conf.low", "conf.high")]
tidies <- merge(tidies, tidies_inner, by = c("term",
"model"), suffixes = c("", ".y"))
}
else {
msg_wrap("inner_ci_level is ignored when plot.distributions == TRUE and\n more than one model is used.")
inner_ci_level <- NULL
}
}
if (exp == TRUE) {
if (plot.distributions == TRUE) {
warn_wrap("Distributions cannot be plotted when exp == TRUE.")
plot.distributions <- FALSE
}
exp_cols <- c("estimate", "conf.low", "conf.high")
if (!is.null(inner_ci_level)) {
exp_cols <- c(exp_cols, "conf.low.inner", "conf.high.inner")
}
tidies[exp_cols] <- exp(tidies[exp_cols])
}
if (!is.null(groups)) {
tidies$group <- NA
for (g in seq_len(length(groups))) {
if (is.null(names(groups)) || names(groups)[g] ==
"") {
tidies$group[tidies$term %in% groups[[g]]] <- as.character(g)
}
else {
tidies$group[tidies$term %in% groups[[g]]] <- names(groups)[g]
}
}
if (plot.distributions == TRUE) {
warn_wrap("Distributions cannot be plotted when groups are used.")
}
}
p <- ggplot(data = tidies, aes(y = term, x = estimate, xmin = conf.low,
xmax = conf.high))
if (!is.null(groups)) {
if (is.null(facet.rows) && is.null(facet.cols)) {
facet.cols <- 1
}
p <- p + facet_wrap(group ~ ., nrow = facet.rows, ncol = facet.cols,
scales = "free_y", strip.position = facet.label.pos)
}
if (length(colors) == 1 || length(colors) != n_models) {
colors <- get_colors(colors, n_models)
}
else {
colors <- colors
}
dh <- as.numeric(!plot.distributions) * 0.5
if (!is.null(inner_ci_level)) {
p <- p + ggstance::geom_linerangeh(aes(y = term, xmin = conf.low.inner,
xmax = conf.high.inner, colour = model), position = ggstance::position_dodgev(height = dh),
size = 2, show.legend = length(mods) > 1)
}
if (plot.distributions == FALSE || n_models == 1) {
require(ggh4x)
p <- p + ggstance::geom_pointrangeh(aes(y = interaction(term, model), x = estimate,
xmin = conf.low, xmax = conf.high, fill = model), position = ggstance::position_dodgev(height = dh),
colour = "black", fatten = point.size, size = 0.5, shape = 22,
show.legend = length(mods) > 1) +
scale_y_discrete(guide = "axis_nested")
}
else {
p <- p + geom_point(aes(y = term, x = estimate, colour = "black",
shape = model), fill = model, size = point.size,
stroke = 1, show.legend = TRUE)
}
if (length(point.shape) == 1 && point.shape == TRUE) {
oshapes <- c(21:25, 15:18, 3, 4, 8)
shapes <- oshapes[seq_len(n_models)]
}
else if (length(point.shape) == 1 && is.logical(point.shape[1]) &&
point.shape[1] == FALSE) {
shapes <- rep(21, times = n_models)
}
else {
if (length(point.shape) != n_models && length(point.shape) !=
1) {
stop_wrap("You must provide the same number of point shapes as the\n number of models.")
}
else if (length(point.shape) == 1) {
shapes <- rep(23, times = n_models)
}
else {
shapes <- point.shape
}
}
p <- p + geom_vline(xintercept = 1 - !exp, linetype = 2,
size = 0.25) +
scale_colour_manual(values = rep("black", length(colors)), limits = rev(levels(tidies$model)),
breaks = rev(levels(tidies$model)), labels = rev(levels(tidies$model)),
name = legend.title, guide = "none") +
# scale_shape_manual(limits = rev(levels(tidies$model)), values = shapes, name = legend.title) +
theme_nice() +
drop_y_gridlines() +
theme(axis.title.y = element_blank(), axis.text.y = element_text(size = 10), panel.grid.major.x = element_line(linetype = "solid")) +
xlab(ifelse(exp, no = "Estimate", yes = "exp(Estimate)")) +
theme(ggh4x.axis.nestline = element_line(linetype = 1, colour = "gray92"))
if (plot.distributions == TRUE) {
p <- p + scale_y_discrete(limits = levels(tidies$term),
name = legend.title)
yrange <- ggplot_build(p)$layout$panel_params[[1]]$y.range
xrange <- ggplot_build(p)$layout$panel_params[[1]]$x.range
if (is.null(yrange) && is.null(xrange)) {
yrange <- ggplot_build(p)$layout$panel_ranges[[1]]$y.range
xrange <- ggplot_build(p)$layout$panel_ranges[[1]]$x.range
}
if (yrange[2] <= (length(unique(tidies$term)) + 0.8)) {
upper_y <- length(unique(tidies$term)) + 0.8
}
else {
upper_y <- yrange[2]
}
lower_y <- 0.8
p <- p + coord_cartesian(ylim = c(lower_y, upper_y),
xlim = xrange, expand = FALSE)
}
return(p)
}
reg_match <- function(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE) {
matches <- gregexpr(pattern, text, ignore.case, perl, fixed, useBytes)
# If only 1 match, return just the one match rather than a list
if (length(matches) == 1) {matches <- matches[[1]]}
regmatches(text, matches, invert)
}
find_S3_class <- function(generic, ..., package) {
# not going to provide function, just function name as character
# ch <- deparse(substitute(generic))
f <- X <- function(x, ...) UseMethod("X")
for (m in .S3methods(generic, envir = getNamespace(package))) {
assign(sub(generic, "X", m, fixed = TRUE), "body<-"(f, value = m))
}
char_meth <- tryCatch(X(...), error = function(e) {return(NA)})
if (is.na(char_meth)) {return(char_meth)}
# Return the stub for dispatch to getS3method as class
return(reg_match("(?<=\\.).*", char_meth, perl = TRUE))
}
make_tidies <- function(mods, ex_args, ci_level, model.names, omit.coefs,
coefs, resp = NULL, dpar = NULL) {
# Need to handle complexities of resp and dpar arguments
dpars <- NULL
dpar_fits <- FALSE
resps <- NULL
if ("brmsfit" %in% sapply(mods, class)) {
if (!requireNamespace("broom.mixed")) {
stop_wrap("Please install the broom.mixed package to process `brmsfit`
objects.")
}
mv_fits <- sapply(mods, function(x) "mvbrmsformula" %in% class(formula(x)))
if (any(mv_fits)) {
if (!is.null(resp) && length(resp) %nin% c(sum(mv_fits), 1)) {
stop_wrap("The length of the `resp` argument must be either equal to
the number of multivariate `brmsfit` objects or 1.")
} else if (is.null(resp)) { # Need to retrieve first DV
resp <- lapply(mods[mv_fits], function(x) names(formula(x)[["forms"]])[1])
}
# Create new vector that includes the non-multivariate models
resps <- as.list(rep(NA, length(mods)))
# Now put resp into that vector
resps[mv_fits] <- resp
}
# Need to detect which models have distributional parameters
dpar_fits <- sapply(mods, function(x) {
if ("brmsfit" %nin% class(x)) return(FALSE)
if ("mvbrmsformula" %in% class(formula(x))) {
any(sapply(
brms::brmsterms(formula(x))$terms, function(x) length(x$dpars)
) > 1)
} else {
length(brms::brmsterms(formula(x))$dpars) > 1
}
})
if (!is.null(dpar)) {
if (length(dpar) %nin% c(sum(dpar_fits), 1)) {
stop_wrap("The length of the `dpar` argument must be either equal to
the number of `brmsfit` objects with a distributional model or
1.")
}
dpars <- as.list(rep(NA, length(mods)))
dpars[dpar_fits] <- dpar
}
}
# Create empty list to hold tidy frames
tidies <- as.list(rep(NA, times = length(mods)))
for (i in seq_along(mods)) {
# Major kludge for methods clash between broom and broom.mixed
# Making namespace environment with broom.mixed before generics
# to try to put those methods in the search path
# Will drop after update to broom 0.7.0
if (requireNamespace("broom.mixed")) {
nse <- as.environment(unlist(sapply(c(asNamespace("broom.mixed"),
asNamespace("generics")),
as.list)))
} else {
nse <- asNamespace("generics")
}
method_stub <- find_S3_class("tidy", mods[[i]], package = "generics")
if (getRversion() < 3.5) {
# getS3method() only available in R >= 3.3
the_method <- get(paste0("tidy.", method_stub), nse,
mode = "function")
} else {
the_method <- utils::getS3method("tidy", method_stub, envir = nse)
}
if (!is.null(ex_args)) {
method_args <- formals(the_method)
method_args <-
method_args[names(method_args) %nin% c("intervals", "prob")]
if (method_stub == "brmsfit" && "par_type" %nin% ex_args) {
ex_args <- c(ex_args, par_type = "non-varying", effects = "fixed")
}
extra_args <- ex_args[names(ex_args) %in% names(method_args)]
} else if (method_stub == "brmsfit" && is.null(ex_args)) {
extra_args <- list(effects = "fixed")
} else {
extra_args <- NULL
}
all_args <- as.list(c(x = list(mods[[i]]), conf.int = TRUE,
conf.level = ci_level, extra_args))
tidies[[i]] <- do.call(generics::tidy, args = all_args)
if (!is.null(names(mods)) && any(names(mods) != "")) {
tidies[[i]]$model <- names(mods)[i]
} else {
modname <- paste("Model", i)
tidies[[i]]$model <- modname
}
# Deal with glht with no `term` column
if ("term" %nin% names(tidies[[i]]) && "lhs" %in% names(tidies[[i]])) {
tidies[[i]]$term <- tidies[[i]]$lhs
}
if ("brmsfit" %in% class(mods[[i]]) && (!is.null(resps) || !is.null(dpars))) {
# See if we're selecting a DV in a multivariate model
if (!is.null(resps) && !is.na(resps[[i]])) {
# Now see if we're also dealing with a distributional outcome
if (is.null(dpars) || is.na(dpars[[i]])) {
# If not, then just select the terms referring to this DV
tidies[[i]] <- tidies[[i]][tidies[[i]]$response == resps[[i]], ]
} else {
# Otherwise, select those referring to this distributional DV
tidies[[i]] <- tidies[[i]][tidies[[i]]$response == dpars[[i]], ]
this_dv <- grepl(paste0("^", resps[[i]], "_"), tidies[[i]]$term)
tidies[[i]] <- tidies[[i]][this_dv, ]
# Also want to manicure those term names because they're confusing
tidies[[i]]$term <-
gsub(paste0("^", resps[[i]], "_"), "", tidies[[i]]$term)
}
} else if (!is.null(dpars) && !is.na(dpars[[i]])) {
# Everything's different for non-multivariate models -__-
# Prefixed with, e.g., sigma_
this_dv <- grepl(paste0("^", dpars[[i]], "_"), tidies[[i]]$term)
tidies[[i]] <- tidies[[i]][this_dv, ]
# Drop the prefix now
tidies[[i]]$term <-
gsub(paste0("^", dpars[[i]], "_"), "", tidies[[i]]$term)
}
} else if ("brmsfit" %in% class(mods[[i]]) &&
any(dpar_fits) && dpar_fits[[i]]) {
# Need to drop dpar parameters...first, need to identify them
the_dpars <- names(brms::brmsterms(formula(mods[[i]]))$dpars)
# Loop through them, other than the first (location) parameter
for (the_dpar in the_dpars[-1]) {
tidies[[i]] <-
tidies[[i]][!grepl(paste0("^", the_dpar, "_"), tidies[[i]]$term),]
}
}
}
# Keep only columns common to all models
# TODO: replicate dplyr::bind_rows behavior of keeping all columns and
# filling empty rows with NA
tidies <- lapply(tidies, function(x) {
x[Reduce(intersect, lapply(tidies, names))]
})
# Combine the tidy frames into one, long frame
tidies <- do.call(rbind, tidies)
# For consistency in creating the factors apply contrived names to model.names
if (is.null(model.names)) {
model.names <- unique(tidies$model)
}
# Drop omitted coefficients
if (!is.null(omit.coefs)) {
tidies <- tidies[tidies$term %nin% omit.coefs,]
}
print(tidies)
# Creating factors with consistent ordering for coefficients too
if (is.null(coefs)) {
coefs <- unique(tidies$term)
names(coefs) <- coefs
} else {
tidies <- tidies[tidies$term %in% coefs,] #Valeria coefs must be specified as varnamecatname
if (is.null(names(coefs))) {
names(coefs) <- coefs
}
}
print(tidies)
# For some reason, the order of the legend and the dodged colors
# only line up when they are reversed here and in the limits arg of
# scale_colour_brewer...no clue why that has to be the case
tidies$model <- factor(tidies$model, levels = rev(model.names))
tidies$term <- factor(tidies$term, levels = rev(coefs),
labels = rev(names(coefs)))
if (all(c("upper", "lower") %in% names(tidies)) &&
"conf.high" %nin% names(tidies)) {
tidies$conf.high <- tidies$upper
tidies$conf.low <- tidies$lower
}
# For merMod and other models, we may not get CIs for the random terms
# and don't want blank rows on the plot.
which_complete <- which(!is.na(tidies$conf.high) & !is.na(tidies$conf.low) &
!is.na(tidies$estimate))
tidies <- tidies[which_complete,]
tidies$term <- droplevels(tidies$term)
return(tidies)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.