insulation_score_fun = function(A, size=3)
{
insulation_score_fun_helper = function(bin_start)
{
bin_mid = bin_start + size -1
bin_end = bin_start + 2*size - 1
up = sum(A[bin_start:bin_mid, bin_start:bin_mid])
down = sum(A[(bin_mid+1):bin_end, (bin_mid+1):bin_end])
inter = 2*sum(A[bin_start:bin_mid, (bin_mid+1):bin_end])
insulation = 1 - inter / (up + down)
return(insulation)
}
bin_starts = 1:(nrow(A) - 2*size + 1)
insulations = sapply(bin_starts, function(bin_start) insulation_score_fun_helper(bin_start))
names(insulations) = rownames(A)[size:(nrow(A) - size)]
return(insulations)
}
## the follow code generates the compartment_segs based on A and initial_clusters
generate_compartment_segs <- function( initial_clusters )
{
bins_seq = unname(unlist(initial_clusters))
if(!all(diff(bins_seq)==1)) stop('check generate_compartment_segs in generate_compartment_segs.R')
if(bins_seq[1]!=1) stop('check generate_compartment_segs in generate_compartment_segs.R')
compartment_segs = do.call(rbind, lapply(initial_clusters, function(v) v[c(1, length(v))]))
compartment_segs = data.frame( start_pos=compartment_segs[,1], end_pos=compartment_segs[,2] )
return( compartment_segs )
}
## This function gets the nodes at level k
## Yuanlong LIU
## 02_07_2018
get_level_k_nodes <- function(tree, k)
{
nodes = igraph::ego(tree, order=k, nodes=1, mode = "out", mindist = 1)[[1]]
return(nodes)
}
## This function gets the TADs at level k
## Yuanlong LIU
## 18_05_2018
get_level_k_TADs <- function(branches, k)
{
tad_sizes_ind = lapply( branches, function(branch)
{
branch_level_k = igraph::induced.subgraph( branch, V(branch)$depth <= k )
tad_size_ind = get_leaves(branch_level_k, 'igraph')$width
})
tad_sizes = unlist(tad_sizes_ind)
end_pos = cumsum(tad_sizes)
start_pos = c(1, 1 + end_pos[-length(end_pos)])
tads = data.frame(start_pos=start_pos, end_pos=end_pos)
return( tads )
}
get_least_residue_matrix <- function(pA_sym, max_nbins, allowed_shifts)
{
nbins = nrow( pA_sym )
max_nbins_bp = max_nbins
# remainders = nbins %% (max_nbins + (-10:10))
remainders = nbins %% (max_nbins + allowed_shifts)
max_nbins = (max_nbins + allowed_shifts)[ which.min(remainders) ]
n2one = floor(nbins/max_nbins)
remainder = nbins %% max_nbins
if(max_nbins!=max_nbins_bp) warning('Value of max_nbins has been adjusted from ', max_nbins_bp, ' to ', max_nbins, '. This results in ', remainder, ' rows/columns excluded for the analysis.')
if(remainder!=0) A_final = pA_sym[-(tail(1:nbins, remainder)), -(tail(1:nbins, remainder))]
if(remainder==0) A_final = pA_sym
res = list(A_final=A_final, n2one=n2one, max_nbins_new=max_nbins)
}
## merge clusters based on their corr_mat
## Yuanlong LIU
## 01-07-2018
sim.fun <- function( corr_mat, mod1, mod2, method='mean' )
{
if(method=='mean') return(mean(corr_mat[mod1, mod2]))
if(method=='median') return(median(corr_mat[mod1, mod2]))
if(method=='max') return(max(corr_mat[mod1, mod2]))
}
my_hclust <- function( corr_mat, initial_modules, n_clusters=6, method='mean' )
{
modules = initial_modules
n = length(modules)
sim.matrix = matrix(-1 , nrow=n, ncol=n )
for( nrows in 1: (n-1))
{
for( ncols in (nrows+1):n)
{
sim.matrix[nrows, ncols] = sim.fun(corr_mat, modules[[nrows]], modules[[ncols]], method)
}
}
times = 1
while ( TRUE )
{
max.sim = max( sim.matrix )
if( length(modules) < n_clusters) break;
idx = which( sim.matrix==max.sim, arr.ind=TRUE, useNames=FALSE )[1, ] ##find maximum similarity
len1 = length( modules[[ idx[1] ]])
len2 = length( modules[[ idx[2] ]])
small = ifelse( len1 >= len2, 2, 1 )
which2rm = idx[ small ] ##the smaller one will be merged into the bigger one
which2kp = idx[ -small ]
cat('times:', times, '::::: max.sim:', max.sim, '\n')
##cat('rm:', names(modules[which2rm]), 'keep:', names(modules[which2kp]), '\n' )
##name.merge = as.character( times )
module.merge = union( modules[[ idx[1] ]], modules[[ idx[2] ]] ) ##merge two candidates
modules[ idx ] =NULL ##remove both candidates
modules = c(modules, list(module.merge) ) ##append the merged module to the tail
##names( modules[length(modules)] ) = name.merge ##add name of the merged module
sim.matrix = sim.matrix[-idx, -idx] ##remove rows/cols
##calculate similarity between the merged module with others
sim.merge = unlist( use.names=FALSE, lapply( modules[-length(modules)], function(v) { sim.fun(corr_mat, v, modules[[length(modules)]], method) } ) )
sim.matrix = cbind( sim.matrix, sim.merge )
sim.matrix = rbind( sim.matrix, rep(-1, ncol(sim.matrix)) )
times = times + 1
}
merged_modules = modules
# save(merged_modules, file='merged_modules.Rdata')
# for(i in 1:length(merged_modules)) write.table(t(merged_modules[[i]]), file='merged_modules.tab', row.names=FALSE,col.names=FALSE, quote=FALSE, sep='\t', append=TRUE)
merged_modules = lapply(merged_modules, sort)
return( merged_modules )
}
## load required_packages. If failed, install them
# required_packages = c('doParallel', 'ape', 'dendextend', 'fitdistrplus', 'igraph', 'Matrix', 'rARPACK', 'factoextra', 'maptools', 'data.table', 'Rcpp', 'RcppArmadillo', 'fields', 'GenomicRanges' )
# sapply(required_packages, require, character.only = TRUE, quietly = TRUE)
# source(paste0(CALDER_dir, '0.Scripts/helper/header.R'))
# source(paste0(CALDER_dir, '0.Scripts/helper/generate_compartments_bed_fun.R'))
# source(paste0(CALDER_dir, '0.Scripts/helper/HighResolution2Low.R'))
# source(paste0(CALDER_dir, '0.Scripts/helper/get_original_tad_indices.R'))
# source(paste0(CALDER_dir, '0.Scripts/helper/bisecting_kmeans.R'))
# source(paste0(CALDER_dir, '0.Scripts/helper/TopDom_v0.0.2.R'))
# source(paste0(CALDER_dir, '0.Scripts/helper/my_hclust.R'))
############################################################
## this function removes all-zero columns / rows
rm_zeros <- function(A) ## mat is a symmetric matrix
{
zero_indices = apply( A, 2, function(v) all(v==0) )
if( all(zero_indices==0) ) return(A)
A = A[!zero_indices, !zero_indices]
return(A)
}
my_dist <- function(m) {mtm <- Matrix::tcrossprod(m); sq <- rowSums(m*m); res = suppressWarnings(sqrt(outer(sq,sq,"+") - 2*mtm)); res[is.nan(res)]=0; diag(res)=0; return(res)}
## this checks whether a L matrix looks good
check_L <- function(L, nrows)
{
matplot(t(L[1:nrows,]), type='l')
}
MoC = function(P, Q)
{
len_p = length(P)
len_q = length(Q)
if((len_p==len_q) & (len_p==1)) return(1)
grids = expand.grid(1:len_p, 1:len_q)
vecs = apply( grids, 1, function(x) {u=x[1]; v=x[2]; length(intersect( P[[u]], Q[[v]] ))^2/length(P[[u]])/length(Q[[v]])} )
res = 1/( sqrt(len_p*len_q) - 1)*(sum(vecs) - 1)
return(res)
}
get_stair_vecs <- function(mat, from, to)
{
n = nrow(mat)
solve <- function(mid) c(mat[1:mid,(mid+1):n])
lapply(from:to, solve)
}
correct_A_fast_divide_by_mean <- function(A, remove_zero=TRUE, divide_or_substract='divide', mean_or_median='mean')
{
f = function(i, d) d*(d-1)/2+1+(2*d+i)*(i-1)/2
n = nrow(A)
upper_tri_values = A[upper.tri(A, diag=TRUE)]
means_mat = indices = A*0
indices[upper.tri(indices, diag=TRUE)] = 1:((n+1)*n/2)
diag_values = orders = rep(list(list()), n)
for(d in seq_along(orders)) orders[[d]] = f(i=seq(1, n-d+1), d=d)
for(d in seq_along(orders)) diag_values[[d]] = upper_tri_values[f(i=seq(1, n-d+1), d=d)]
if(mean_or_median=='mean'){
if(remove_zero) means = unlist(lapply( diag_values, function(v) {m=mean(v[v!=0]); v=v*0+m; v[is.na(v)]=0; return(v) } ))
if(!remove_zero) means = unlist(lapply( diag_values, function(v) {m=mean(v); v=v*0+m; return(v) } ))
}
if(mean_or_median=='median'){
if(remove_zero) means = unlist(lapply( diag_values, function(v) {m=median(v[v!=0]); v=v*0+m; v[is.na(v)]=0; return(v) } ))
if(!remove_zero) means = unlist(lapply( diag_values, function(v) {m=median(v); v=v*0+m; return(v) } ))
}
means[means==0] = 1
means_mat[upper.tri(means_mat, diag=TRUE)] = means[order(unlist(orders))]
if(divide_or_substract=='divide') A_corrected = A / means_mat
if(divide_or_substract=='substract') A_corrected = A - means_mat
A_corrected = as.matrix( forceSymmetric(A_corrected) )
rownames( A_corrected ) = colnames( A_corrected ) = rownames( A )
return( A_corrected )
}
correct_A_fast_equal_mean <- function(A, remove_zero=TRUE, divide_or_substract='divide', mean_or_median='mean')
{
## may also try log normal, since the off-diagnal values follow well a log-normal distribution
## commented by Yuanlong LIU, 2018-07-26
f = function(i, d) d*(d-1)/2+1+(2*d+i)*(i-1)/2
n = nrow(A)
upper_tri_values = A[upper.tri(A, diag=TRUE)]
means_mat = indices = A*0
indices[upper.tri(indices, diag=TRUE)] = 1:((n+1)*n/2)
diag_values = orders = rep(list(list()), n)
for(d in seq_along(orders)) orders[[d]] = f(i=seq(1, n-d+1), d=d)
for(d in seq_along(orders)) diag_values[[d]] = upper_tri_values[f(i=seq(1, n-d+1), d=d)]
if(mean_or_median=='mean'){
if(remove_zero) means = unlist(lapply( diag_values, function(v) {m=mean(v[v!=0]); v=v*0+m; v[is.na(v)]=0; return(v) } ))
if(!remove_zero) means = unlist(lapply( diag_values, function(v) {m=mean(v); v=v*0+m; return(v) } ))
}
if(mean_or_median=='median'){
if(remove_zero) means = unlist(lapply( diag_values, function(v) {m=median(v[v!=0]); v=v*0+m; v[is.na(v)]=0; return(v) } ))
if(!remove_zero) means = unlist(lapply( diag_values, function(v) {m=median(v); v=v*0+m; return(v) } ))
}
means[means==0] = 1
means_mat[upper.tri(means_mat, diag=TRUE)] = means[order(unlist(orders))]
if(divide_or_substract=='divide') A_corrected = A / means_mat
if(divide_or_substract=='substract') A_corrected = A - means_mat
A_corrected = as.matrix( forceSymmetric(A_corrected) )
rownames( A_corrected ) = colnames( A_corrected ) = rownames( A )
return( A_corrected )
}
creat_phylo_object <- function(tree)
{
creat_phylo_object_inner <- function(tree)
{
twins = ego(tree, order=1, node=1, mode='out', mindist=1)[[1]]
branches = decompose(tree - 1)
left_branch = branches[[1]]
right_branch = branches[[2]]
left_branch_flag = vcount( left_branch ) == 1
right_branch_flag = vcount( right_branch ) == 1
short_walk_dist = 1
diameters = sapply(branches, diameter)
long_walk_dist = abs(diff(diameters)) + 1
if( left_branch_flag ) left_branch_newick = V(left_branch)$name
if( !left_branch_flag ) left_branch_newick = creat_phylo_object_inner(left_branch)
if( right_branch_flag ) right_branch_newick = V(right_branch)$name
if( !right_branch_flag ) right_branch_newick = creat_phylo_object_inner(right_branch)
if( diameters[1] > diameters[2] ) tree_newick = paste( '(', left_branch_newick, ':', short_walk_dist, ',', right_branch_newick, ':', long_walk_dist, ')', sep='' )
if( diameters[1] <= diameters[2] ) tree_newick = paste( '(', left_branch_newick, ':', long_walk_dist, ',', right_branch_newick, ':', short_walk_dist, ')', sep='' )
return( tree_newick )
}
tree_newick = creat_phylo_object_inner(tree)
final_newick = paste(tree_newick, ';', sep='')
tree = read.tree(text=final_newick)
return( tree )
}
dist_max_min <- function( L_diff )
{
N = dim(L_diff)[1]
L_diff_dist = list()
for( dist in 1:(N-1) )
{
maxLs = numeric( N-dist )
for( row in 1:(N-dist) )
{
i = row
j = row + dist
maxLs[i] = L_diff[i, j]
}
L_diff_dist[[dist]] = maxLs
}
return(L_diff_dist)
}
divide_into_groups <- function(A, n_group)
{
N = nrow(A)
dists = 1:(N-1)
counts = sapply(dists, function(v) n_cells2compute( A, v ))
average = (ceiling(sum(counts) / n_group)) ## the average computational complexity
groups <- cumsum(counts) %/% average + 1
borders = c(0, which(diff(groups)!=0))
binsizes = c()
for( i in 1:(length(borders)-1) )
{
binsizes = c(binsizes, sum(counts[ (borders[i]+1):borders[i+1] ]))
}
info = list(borders=borders, binsizes=binsizes)
return(info)
}
get_leaves <- function(tree, type='name')
{
leaf_indices = which(degree( tree, mode='out' ) == 0)
if( type=='name' ) return(V(tree)[leaf_indices]$name)
if( type=='igraph_node' ) return(V(tree)[leaf_indices])
if( type=='igraph' ) return(V(tree)[leaf_indices])
if( type=='index' ) return(leaf_indices)
}
get_segments <- function(hi_tree, binsize_thresh, return_segmentss_tree=FALSE)
{
leaf_widths = get_leaves(hi_tree, type='igraph')$width_rescaled
if( binsize_thresh <= min(leaf_widths) )
{
warning( 'Your input binsize_thresh has a value: ', binsize_thresh, ', which is smaller than the minimum of the leaf width of hi_tree: ', min(leaf_widths) )
}
nodes2rm = numeric()
for( i in 2:vcount(hi_tree) ) ## root node not take into account
{
node = V(hi_tree)[i]
width = node$right_rescaled - node$left_rescaled + 1
if(width <= binsize_thresh)
{
parent = ego(hi_tree, order=1, nodes=node, mode = "in", mindist = 1)[[1]]
width_parent = parent$right_rescaled - parent$left_rescaled + 1
if(width_parent <= binsize_thresh) nodes2rm = c(nodes2rm, i)
}
}
trimmed_tree = hi_tree - nodes2rm
leaves = get_leaves(trimmed_tree, type='igraph_node')
segmentss = cbind(leaves$left_rescaled, leaves$right_rescaled)
if(return_segmentss_tree==TRUE) return( trimmed_tree )
return( segmentss )
}
## bin_signals_5_10 is the topDom signal of 16388 bins
get_tree_decoration <- function( single_res_info, decoration=TRUE, distr, n_parameters, imputation_num=1E2 )
{
cA = single_res_info$cA
# cat(dim(cA), '\n')
if( !is.null(single_res_info$full_tree) ) tree=single_res_info$full_tree
if( is.null(single_res_info$full_tree) ) tree = get_tree_v0(single_res_info)
# if(tree=='bad_tree') return('bad_tree')
if(class(tree)!='igraph') return('bad_tree')
## more decoration
if( decoration==FALSE ) return( tree )
leaf_indices = get_leaves( tree, type='index' )
V(tree)$mean_diff = 0
zero_ratios = numeric()
for(i in setdiff(1:vcount(tree), leaf_indices))
{
node = V(tree)[i]
# V(tree)[i]$L = L[node$left, node$right]
# A_union = cA[node$left:node$right, node$left:node$right]
# V(tree)[i]$L_union = get_prob_nb( A_union[upper.tri(A_union, diag=TRUE)] )
# the p-value of: H0: unioned model; H1: hierarchical model
twins = ego(tree, 1, node, mode='out', mindist=1)[[1]]
mid = sort(c(as.numeric(twins[1]$left), as.numeric(twins[1]$right), as.numeric(twins[2]$left), as.numeric(twins[2]$right)))[2]
if(distr=='lnorm')
{
if(!is.null(imputation_num))
{
test_info_imp = p_likelihood_ratio_lnorm( cA, head=as.numeric(node$left), mid=mid, tail=as.numeric(node$right), n_parameters=n_parameters, imputation= TRUE, imputation_num=imputation_num )
V(tree)[i]$imp_p = test_info_imp$p
V(tree)[i]$mean_diff = test_info_imp$mean_diff
}
test_info_nimp = p_likelihood_ratio_lnorm( cA, head=as.numeric(node$left), mid=mid, tail=as.numeric(node$right), n_parameters=n_parameters, imputation=FALSE, imputation_num=imputation_num )
V(tree)[i]$nimp_p = test_info_nimp$p
V(tree)[i]$mean_diff = test_info_imp$mean_diff
# zero_ratios = c(zero_ratios, sum(cA[node$left:node$right, node$left:node$right]==0) / (length(node$left:node$right))^2)
}
if(distr=='wilcox')
{
if(i==1) test_info = p_wilcox_test( is_CD=TRUE, cA, head=as.numeric(node$left), mid=mid, tail=as.numeric(node$right), alternative='less' )
if(i!=1) test_info = p_wilcox_test( is_CD=FALSE, cA, head=as.numeric(node$left), mid=mid, tail=as.numeric(node$right), alternative='less' )
# if(i==1) test_info = p_wilcox_test_nested( is_CD=TRUE, cA, head=as.numeric(node$left), mid=mid, tail=as.numeric(node$right), alternative='less' )
# if(i!=1) test_info = p_wilcox_test_nested( is_CD=FALSE, cA, head=as.numeric(node$left), mid=mid, tail=as.numeric(node$right), alternative='less' )
V(tree)[i]$nimp_p = V(tree)[i]$imp_p = V(tree)[i]$wilcox_p = test_info$p
V(tree)[i]$mean_diff = test_info$mean_diff
# zero_ratios = c(zero_ratios, sum(cA[node$left:node$right, node$left:node$right]==0) / (length(node$left:node$right))^2)
}
test_info_mean_diff = lognormal_mean_test( cA, head=as.numeric(node$left), mid=mid, tail=as.numeric(node$right) )
V(tree)[i]$aa_p = test_info_mean_diff$p_Aa
V(tree)[i]$bb_p = test_info_mean_diff$p_Ab
}
# V(tree)$L_diff = V(tree)$L - V(tree)$L_union
if(!is.null(imputation_num)) V(tree)[leaf_indices]$imp_p = 1
V(tree)[leaf_indices]$nimp_p = V(tree)[leaf_indices]$wilcox_p = V(tree)[leaf_indices]$imp_p = 1
V(tree)[leaf_indices]$aa_p = 1
V(tree)[leaf_indices]$bb_p = 1
return(tree)
}
add_boundary_binsignal_to_decrated_branches <- function( decorated_branches, bin_signals_5_10 )
{
tree_widths = sapply(decorated_branches, function(v) V(v)[1]$width)
if(sum(tree_widths) != length( bin_signals_5_10 )) stop('Check add_boundary_binsignal_to_decrated_branches')
for(k in 1:length(decorated_branches))
{
tree = decorated_branches[[k]]
leaf_indices = get_leaves( tree, type='index' )
for(i in setdiff(1:vcount(tree), leaf_indices))
{
node = V(tree)[i]
# V(tree)[i]$L = L[node$left, node$right]
# A_union = cA[node$left:node$right, node$left:node$right]
# V(tree)[i]$L_union = get_prob_nb( A_union[upper.tri(A_union, diag=TRUE)] )
# the p-value of: H0: unioned model; H1: hierarchical model
twins = ego(tree, 1, node, mode='out', mindist=1)[[1]]
mid = sort(c(as.numeric(twins[1]$left), as.numeric(twins[1]$right), as.numeric(twins[2]$left), as.numeric(twins[2]$right)))[2]
absolute_mid = mid + sum(tree_widths[(1:k)-1])
V(tree)[i]$binsignal = bin_signals_5_10[absolute_mid]
}
V(tree)[leaf_indices]$binsignal = 0
V(tree)[which(is.na(V(tree)$binsignal))]$binsignal = 0
decorated_branches[[k]] = tree
}
return(decorated_branches)
}
get_tree_v0 <- function( single_res_info )
{
ancestors = single_res_info$ancestors
L = single_res_info$L
N = dim(ancestors)[1]
current_node = ancestors[1, N]
recursive <- function(current_node)
{
# cat(current_node, '\n')
seqs = as.numeric(strsplit(current_node,'-')[[1]])
# cat( current_node, '\n' )
left_node = ancestors[seqs[1],seqs[2]]
right_node = ancestors[seqs[3],seqs[4]]
flag_left = (seqs[1]!=seqs[2]) & (left_node!="")
flag_right = (seqs[3]!=seqs[4]) & (right_node!="")
if(is.na(flag_left)) return( 'bad_tree' ) ## added: 30-04-2020
left_leaf = paste( seqs[1],seqs[2], sep='-' )
right_leaf = paste( seqs[3],seqs[4], sep='-' )
if( flag_left ) left_tree = recursive(left_node)
if( !flag_left ) left_tree = left_leaf
if( flag_right ) right_tree = recursive(right_node)
if( !flag_right ) right_tree = right_leaf
if( !flag_left ) left_node = left_leaf
if( !flag_right ) right_node = right_leaf
tree_raw = graph.empty() + current_node + left_tree + right_tree
tree = add_edges(tree_raw, c(current_node, left_node, current_node, right_node))
return( tree )
}
tree = recursive(current_node)
# stop('I stop here')
# if(tree=='bad_tree') return('bad_tree') ## added: 30-04-2020
if(class(tree)!='igraph') return('bad_tree')
## this part tries to decorate the tree by adding various node attributes
V(tree)$left = sapply( V(tree)$name, function(v) {tmp=strsplit(v,'-')[[1]]; return(as.numeric(head(tmp,1)))} )
V(tree)$right = sapply( V(tree)$name, function(v) {tmp=strsplit(v,'-')[[1]]; return(as.numeric(tail(tmp,1)))} )
V(tree)$name = sapply( V(tree)$name, function(v) {tmp=strsplit(v,'-')[[1]]; paste( '(', head(tmp,1), ',', tail(tmp,1), ')', sep='' )} )
V(tree)$width = V(tree)$right - V(tree)$left + 1
return(tree)
}
is_binary_tree <-function(tree)
{
leaves = get_leaves( tree, 'index' )
not_leaves = setdiff(1:vcount(tree), leaves)
degrees = degree(tree, v = not_leaves, mode = 'out')
if(!is.connected( tree )) return(FALSE)
if(all(degrees==2)) return(TRUE)
return(FALSE)
}
join_left_or_right <- function(tree)
{
leaves = get_leaves( tree, 'igraph' )
left_or_right = numeric()
left_or_right[1] = 0
left_or_right[length(leaves) - 1] = 0
for( i in 2:(length(leaves) - 1) )
{
leave = leaves[i]
parent = ego(tree, nodes=leave, order=1, mindist=1, mode='in')[[1]]
if( parent$left < leave$left ) left_or_right[i] = -1 ## left
if( parent$right > leave$right ) left_or_right[i] = 1 ## right
}
return( left_or_right )
}
long_slices <- function(left_or_right, thresh=3)
{
dup_lens = rle( left_or_right )$lengths
dup_values = rle( left_or_right )$values
long_dups = which( dup_lens >= thresh )
long_dup_lens = dup_lens[long_dups]
long_dup_start_pos = cumsum( dup_lens )[long_dups-1] + 1 # 1: shift to the right by one
long_dup_direction = left_or_right[ long_dup_start_pos ]
indices_of_slice = as.vector(unlist(mapply(function(u,v) {seq(from=u, length=v, by=1)}, long_dup_start_pos, long_dup_lens)))
dup_info = list( long_slices_lens=long_dup_lens, long_slices_start_pos=long_dup_start_pos, long_dup_direction=long_dup_direction, indices_of_slice=indices_of_slice )
return(dup_info)
}
n_cells2compute <- function( A, dist, min_n_bins=1 )
{
N = nrow(A)
if(min_n_bins==1)
{
count = dist*(1+dist)*(2+dist)*(N-dist)/6
return(count)
}
count = (dist - 2*min_n_bins + 2)*(dist^2 + 2*dist*min_n_bins + dist - 2*(min_n_bins - 2)*min_n_bins)*(N - dist) / 6
return(count)
}
plot_tree <- function(tree, seg_col='blue', which_part='upper', indices_of_slice=NULL, ...)
{
root_node = V(tree)[1]
leaves = V(tree)[which(degree( tree, mode='out' ) == 0)]
plot_inner <- function( node ){
left = node$left
right = node$right
if(right - left == 1)
{
return()
}
x0 = left - 0.5
x1 = right + 0.5
if(which_part=='upper')
{
segments(x0, x0, x0, x1, col=seg_col, ...)
segments(x0, x1, x1, x1, col=seg_col, ...)
}
if(which_part=='lower')
{
segments(x0, x0, x1, x0, col='black', ...)
segments(x1, x1, x1, x0, col='black', ...)
}
if(which_part=='both')
{
segments(x0, x0, x0, x1, col=seg_col, ...)
segments(x0, x1, x1, x1, col=seg_col, ...)
segments(x0, x0, x1, x0, col='black', ...)
segments(x1, x1, x1, x0, col='black', ...)
}
if( !is.null(indices_of_slice) )
{
if(left %in% indices_of_slice)
segments(x0, x0, x0, x1, col='yellow', ...)
if(right %in% indices_of_slice)
segments(x0, x1, x1, x1, col='black', ...)
}
if( node %in% leaves ) return()
twins = ego(tree, node=node, order=1, mindist=1, mode='out')[[1]]
left_node = twins[1]
plot_inner(left_node)
if( length(twins) > 1 )
{
# cat('hello', '\n')
right_node = twins[2]
plot_inner(right_node)
}
}
plot_inner(root_node)
return()
}
remove_blank_cols <- function( mat, sparse=FALSE, row_or_col='both', ratio=0.05 )
{
if(sparse==TRUE)
{
if(row_or_col=='row')
{
non_zero_indices = (Matrix::rowSums(mat != 0) / ncol(mat) > ratio)
new_mat = mat[non_zero_indices, ]
return(new_mat)
}
if(row_or_col=='col')
{
non_zero_indices = (Matrix::colSums(mat != 0) / nrow(mat) > ratio)
new_mat = mat[, non_zero_indices]
return(new_mat)
}
if( ratio > 0 ) ## remove col/rows with non-zero number smaller than 5% percentile
{
positive_num = unname(Matrix::rowSums(mat != 0))
positive_num_thresh = quantile(positive_num[positive_num > 0], ratio)
non_zero_indices = (Matrix::rowSums(mat != 0) > positive_num_thresh)
new_mat = mat[non_zero_indices, non_zero_indices]
return(new_mat)
}
non_zero_indices = (Matrix::rowSums(mat != 0) / ncol(mat) > ratio)
new_mat = mat[non_zero_indices, non_zero_indices]
return(new_mat)
}
col_sum = apply( mat, 2, sum )
blank_col_indices = which( col_sum==0 )
new_mat = mat[ -blank_col_indices, -blank_col_indices ]
return(new_mat)
}
tree_germination <- function(tree)
{
leaves = get_leaves( tree )
for( leaf in leaves )
{
cat(leaf, '\n')
if((vcount(tree) - ecount(tree)) !=1) break
bins = as.character(V(tree)[leaf]$left:V(tree)[leaf]$right)
if(length(bins) == 1) stop('Some leave node contains only one bin, please check')
if(length(bins) == 2) ## this is an exception. added on 11/06/2018
{
nodes_supp = as.character(bins)
edges2add = c(leaf, bins[1], leaf, bins[2])
tree = tree %>% add_vertices(length(nodes_supp), name=nodes_supp) %>% add_edges(edges2add)
next
}
joints_supp = paste('j', bins[1:(length(bins) - 2)], sep='')
joints = c(leaf, joints_supp, bins[length(bins)])
edges2add = character()
for(i in 1:(length(joints)-1))
{
edges2add = c(edges2add, c( joints[i], bins[i], joints[i], joints[i+1] ))
}
nodes_supp = c(joints_supp, bins)
tree = tree %>% add_vertices(length(nodes_supp), name=nodes_supp) %>% add_edges(edges2add)
}
return( tree )
}
trim_tree_adaptive <- function( tree, L_diff_thresh=-Inf, max_imp_p=Inf, max_nimp_p=Inf, width_thresh=-Inf, boundary_signal_thresh=Inf, peak_thresh=-Inf )
{
if(vcount(tree) ==1) return(tree) ## so this can be used!
width_thresh = min(width_thresh, V(tree)[1]$width-1) ## cannot merge if tree is already very small
nodes2rm_Ldiff = V(tree)[which( V(tree)$L_diff <= L_diff_thresh )]$name
nodes2rm_imp_p = V(tree)[which( V(tree)$imp_p >= max_imp_p )]$name
nodes2rm_nimp_p = V(tree)[which( V(tree)$nimp_p >= max_nimp_p )]$name
nodes2rm_boundary_signal = V(tree)[which( V(tree)$binsignal <= boundary_signal_thresh )]$name
nodes2rm_not_peak = V(tree)[which( V(tree)$is_peak <= peak_thresh )]$name
nodes2rm = unique( c( nodes2rm_Ldiff, nodes2rm_imp_p, nodes2rm_nimp_p, nodes2rm_boundary_signal, nodes2rm_not_peak ) )
nodes_not_2rm = setdiff( V(tree)$name, nodes2rm )
flags = sapply( nodes2rm, function(v) { children = names(unlist( ego( tree, nodes = v, order=diameter(tree), mindist=1, mode='out' ))); all(children %in% nodes2rm) } )
nodes2rm_final = names(unlist( ego(tree, nodes = nodes2rm[which(flags==TRUE)], order=diameter(tree), mindist=1, mode='out' ) ) )
if(!is.null(nodes2rm_final)) tree = tree - nodes2rm_final
if(is.null(nodes2rm_final)) cat('No nodes are removed at the given p_thresh\n')
if( width_thresh==-Inf ) return( tree )
tree = trim_tree_adaptive_width_thresh(tree, width_thresh)
return( tree )
}
trim_tree_adaptive_width_thresh <- function( tree, width_thresh )
{
## first remove all nodes of a parent if both are < width_thresh
nodes2rm_width = V(tree)[which( V(tree)$width <= width_thresh )]$name
parentOfnodes2rm_width = names(unlist(ego(tree, node=nodes2rm_width, order=1, mindist=1, mode='in')))
## if two nodes have the same parent, remove them
index2rm = c(which(duplicated(parentOfnodes2rm_width)), which(duplicated(fromLast=TRUE, parentOfnodes2rm_width)))
nodes2rm = nodes2rm_width[index2rm]
tree = tree - nodes2rm
if(!is_binary_tree(tree)) stop('Error in trim_tree_adaptive_width_thresh')
## merge TADs that are too small
nodes2rm_width = V(tree)[which( V(tree)$width <= width_thresh )]$name
di = diameter(tree)
while( length(nodes2rm_width) > 0 )
{
node = nodes2rm_width[1]
parent = ego( tree, nodes = node, order=1, mindist=1, mode='in' )[[1]]
nodesOfSameParent = ego( tree, nodes = parent, order=di, mindist=1, mode='out' )[[1]]
left_siblings = nodesOfSameParent[which(nodesOfSameParent$right < V(tree)[node]$left)]
right_siblings = nodesOfSameParent[which(nodesOfSameParent$left > V(tree)[node]$right)]
left_siblings2change_right = left_siblings[left_siblings$right == (V(tree)[node]$left-1)]
right_siblings2change_left = right_siblings[right_siblings$left == (V(tree)[node]$right+1)]
V(tree)[ left_siblings2change_right ]$right = V(tree)[node]$right
V(tree)[ right_siblings2change_left ]$left = V(tree)[node]$left
V(tree)$width = V(tree)$right - V(tree)$left + 1
tree = tree - node
nodes2rm_width = V(tree)[which( V(tree)$width <= width_thresh )]$name
}
V(tree)$name = paste('(',V(tree)$left, ',', V(tree)$right, ')', sep='')
return(tree)
}
## should be different from trim_tree_adaptive_width_thresh because binsignal is not monotonic
trim_tree_adaptive_binsig_thresh <- function( tree, boundary_signal_thresh )
{
## merge TADs that are too small
parent_of_nodes2rm = V(tree)[which( V(tree)$binsignal <= boundary_signal_thresh )]$name
leaves = get_leaves( tree )
nodes2rm = intersect(leaves, names(unlist(ego( tree, nodes = parent_of_nodes2rm, order=1, mindist=1, mode='out' ))))
while( length(nodes2rm) > 0 )
{
di = diameter(tree)
node = nodes2rm[1]
parent = ego( tree, nodes = node, order=1, mindist=1, mode='in' )[[1]]
sibling = setdiff(ego( tree, nodes = parent, order=1, mindist=1, mode='out' )[[1]]$name, node)
twins_of_sibling = ego( tree, nodes = sibling, order=1, mindist=1, mode='out' )[[1]]$name
nodesOfSameParent = ego( tree, nodes = parent, order=di, mindist=1, mode='out' )[[1]]
left_siblings = nodesOfSameParent[which(nodesOfSameParent$right < V(tree)[node]$left)]
right_siblings = nodesOfSameParent[which(nodesOfSameParent$left > V(tree)[node]$right)]
left_siblings2change_right = left_siblings[left_siblings$right == (V(tree)[node]$left-1)]
right_siblings2change_left = right_siblings[right_siblings$left == (V(tree)[node]$right+1)]
V(tree)[ left_siblings2change_right ]$right = V(tree)[node]$right
V(tree)[ right_siblings2change_left ]$left = V(tree)[node]$left
if(length(twins_of_sibling) > 0) tree = add.edges(tree, c( parent$name, twins_of_sibling[1], parent$name, twins_of_sibling[2]) )
tree = tree - node - sibling
V(tree)$width = V(tree)$right - V(tree)$left + 1
parent_of_nodes2rm = V(tree)[which( V(tree)$binsignal <= boundary_signal_thresh )]$name
leaves = get_leaves( tree )
nodes2rm = intersect(leaves, names(unlist(ego( tree, nodes = parent_of_nodes2rm, order=1, mindist=1, mode='out' ))))
}
V(tree)$name = paste('(',V(tree)$left, ',', V(tree)$right, ')', sep='')
return(tree)
}
visualize_left_or_right <- function(left_or_right, ...)
{
len = length( left_or_right )
plot(1, type="n", xlab="", ylab="", xlim=c(0, len), ylim=c(-2, 2))
for( i in 1:len )
{
if( left_or_right[i]==1 ) segments(i-0.1, 1, i+1, 1, col='red', ...)
if( left_or_right[i]==-1 ) segments(i-0.1, -1, i+1, -1, col='blue', ...)
}
}
xenocraft <- function( trunk, branches )
{
xenocraft_nodes = sapply(branches, function(v) V(v)[1]$name)
if(!all(xenocraft_nodes %in% V(trunk)$name)) stop("Check xenocraft function")
children_xenocraft_nodes = unique(unlist(sapply(ego(trunk, order=diameter(trunk), node=xenocraft_nodes, mode='out', mindist=1), function(v) v$name)))
prunned_trunck = trunk - children_xenocraft_nodes
full_tree = Reduce( union, c(list(prunned_trunck), branches) )
att2delete = setdiff(vertex_attr_names(full_tree), 'name')
for( att in att2delete ) full_tree = delete_vertex_attr(full_tree, att)
return( full_tree )
}
fast_cor <- function(mat)
{
res = 1/( NROW( mat ) -1)*crossprod ( scale( mat , TRUE , TRUE ) )
# scaled_mat = scale( mat , TRUE , TRUE )
# res = 1/( NROW( mat ) -1)*matrix_multiplication_sym_cpp( scaled_mat )
return(res)
}
fast_cor_cor <- function(mat, k)
{
scaled_mat = scale(mat , TRUE , TRUE )
coeff = 1/( NROW( mat ) -1) ## there is no need to multiply this coeff when computing Pearson coeff
res_begin = coeff*crossprod( scaled_mat[, 1:k], scaled_mat )
for(j in (k+1):nrow(mat))
{
res_slice = res_begin[-1,]
res_next = coeff*crossprod( scaled_mat[, j], scaled_mat )
res_slice = rbind(res_slice, res_next)
new_values = cor(t(res_slice), t(res_next))
cat(j, '\n')
}
}
get_bin_singals_CHiP <- function(chr, hc_ordered, res, ks, ChiP_NAME, CELL_LINE, ChiP_data_already_loaded=FALSE)
{
#################
n_bins_of_CD = sapply(res$initial_clusters, length)
pos_start_end = lapply(res$initial_clusters, function(v)
{
bins_ori = as.numeric(res$bin_names[v])
from_id = min(bins_ori)
to_id = max(bins_ori)
start_pos = (from_id-1)*bin_size + 1
end_pos = to_id*bin_size
return(c(start_pos, end_pos))
})
pos_start_end = do.call(rbind, pos_start_end)
#################
ordered_bin_signals_ALL_k_list = lapply(ks, function(k){
hc_k_labels = get_cluser_levels(hc_ordered, k_clusters=k, balanced_4_clusters=FALSE)$cluster_labels
if(is.null(ChiP_NAME))
{
CD_index = labels(hc_ordered)
pos_start_end = pos_start_end[match( CD_index, rownames(pos_start_end) ), ]
ordered_bin_signals_ALL = data.frame(CD_index=CD_index, n_bins=n_bins_of_CD[CD_index], pos_start=pos_start_end[,1], pos_end=pos_start_end[,2], compartment=hc_k_labels[CD_index])
return(ordered_bin_signals_ALL)
}
cluster_signal = get_names_by_H3k4me1(chr, res, ChiP_NAME, kmeans_cluster_assigment=hc_k_labels, CELL_LINE=CELL_LINE, ChiP_data_already_loaded=ChiP_data_already_loaded)
# cluster_signal = rbind(cluster_signal, sorted_coverage)
ordered_bin_signals_ALL = apply(cluster_signal, 1, function(v)
{
bin_signals = v[hc_k_labels]
names(bin_signals) = names(hc_k_labels)
ordered_bin_signals = bin_signals[labels(hc_ordered)] ## order by dendro topology
return(ordered_bin_signals)
})
ordered_bin_signals_ALL = as.data.frame(ordered_bin_signals_ALL)
# CD_index = rownames(ordered_bin_signals_ALL)
CD_index = labels(hc_ordered)
pos_start_end = pos_start_end[match( CD_index, rownames(pos_start_end) ), ]
ordered_bin_signals_ALL = data.frame(CD_index=CD_index, n_bins=n_bins_of_CD[CD_index], pos_start=pos_start_end[,1], pos_end=pos_start_end[,2], compartment=hc_k_labels[CD_index], ordered_bin_signals_ALL)
return(ordered_bin_signals_ALL)
})
names(ordered_bin_signals_ALL_k_list) = paste0('clusters_', ks)
names(ordered_bin_signals_ALL_k_list)[which(names(ordered_bin_signals_ALL_k_list)=="clusters_Inf")] = 'compartment_domains'
return(ordered_bin_signals_ALL_k_list)
}
densplot = function(x,y,points = FALSE, pch=19, cex=1, xlim=c(min(x),max(x)), ylim=c(min(y),max(y)), ...){
df = data.frame(x,y)
d = densCols(x,y, colramp=colorRampPalette(c("black", "white")))
df$dens = col2rgb(d)[1,] + 1L
cols = colorRampPalette(c("#000099", "#00FEFF", "#45FE4F","#FCFF00", "#FF9400", "#FF3100"))(256)
df$col = cols[df$dens]
df=df[order(df$dens),]
if(points)
points(df$x,df$y, pch=pch, col=df$col, cex=cex, ...)
else
plot(df$x,df$y, pch=pch, col=df$col, cex=cex, xlim=xlim, ylim=ylim, ...)
}
my_merge = function(...) merge(..., all=TRUE)
build_chr_bin_domain_fun <- function( CELL_LINE, chrs, cluster_level, p_thresh, ob_oe, downsratio=NULL, compress_size=10 )
{
chrs = as.character(chrs)
chr_bin_domain_tmp = lapply(chrs, function(chr) get_clusters_bins_xy(CELL_LINE, chr, cluster_level, p_thresh, ob_oe, downsratio=downsratio, compress_size=compress_size))
names( chr_bin_domain_tmp ) = chrs ## can use mapply
chr_bin_domain = lapply(chrs, function(v)
{
chr_bin_domain_ind = data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(names(chr_bin_domain_tmp[[v]]), sapply(chr_bin_domain_tmp[[v]], length)) )
chr_bin_domain_ind = chr_bin_domain_ind[order(chr_bin_domain_ind$bin_index), ]
return(chr_bin_domain_ind)
})
names(chr_bin_domain) = chrs
res = do.call(rbind, chr_bin_domain)
rownames(res) = NULL
fun_dir = '/mnt/etemp/nas_yliu/1.HiC/1.HRG/6../27../header_funs.R'
return( res )
}
build_chr_bin_domain_fun_direct <- function( chr, initial_clusters, cluster_vec, bin_names ) ## directly from R workingspace instead of loading
{
chrs = as.character(chr) ## for historic reason, chr -- chrs
chr_bin_domain_tmp = lapply(chrs, function(chr) get_cluster_bin_names(initial_clusters, cluster_vec, bin_names))
names( chr_bin_domain_tmp ) = chrs ## can use mapply
chr_bin_domain = lapply(chrs, function(v) data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(names(chr_bin_domain_tmp[[v]]), sapply(chr_bin_domain_tmp[[v]], length)) ))
names(chr_bin_domain) = chrs
return( do.call(rbind, chr_bin_domain) )
}
get_clusters_bins_xy <- function(CELL_LINE, chr, cluster_level, p_thresh, ob_oe='oe', downsratio, compress_size, sort=TRUE)
{
if(ob_oe=='oe') sub_folder = paste0('./', CELL_LINE, '/oe_chr_', chr, '_', bin_size/1E3, 'kb_', compress_size, 'to1_', p_thresh)
if(ob_oe=='ob') sub_folder = paste0('./', CELL_LINE, '/ob_chr_', chr, '_', bin_size/1E3, 'kb_', compress_size, 'to1_', p_thresh)
if(!is.null(downsratio)) compartments_Rdata_file = paste0(sub_folder, '/chr', chr, '_compartments_atanh_log_AB', ws, 'downsratio_', downsratio, '.Rdata')
if(is.null(downsratio)) compartments_Rdata_file = paste0(sub_folder, '/chr', chr, '_compartments_atanh_log_AB3_3.Rdata')
load(compartments_Rdata_file)
clusters_bins = get_cluster_bin_names(sort=sort, res$initial_clusters, res$clusters[, cluster_level], res$bin_names)
rm( res )
return(clusters_bins)
}
get_cluster_bin_names <- function(initial_clusters, cluster_vec, bin_names, sort=TRUE)
{
if(sort==TRUE) cluster_indices = sort(unique(cluster_vec), decreasing=TRUE)
if(sort==FALSE) cluster_indices = unique(cluster_vec)
cluster_bins = lapply(cluster_indices, function(v)
{
indices = which(cluster_vec==v)
bin_names[unlist(initial_clusters[indices])]
})
names(cluster_bins) = cluster_indices
return(cluster_bins)
}
# ave_cor <- function(mat, seg_len) ## seg_len is the length of a segment
# {
# d = 1:nrow(mat)
# seq_index = split(d, ceiling(seq_along(d)/10))
# tmp = simplify2array( lapply(seq_index[1:22], function(v) fast_cor( mat[v, ] )/10*length(v)) )
# ave_cor_val = rowMeans(tmp, dims = 2)
# }
# if( kmeans_cluster_assigment ): compute the cluster_level signals
get_names_by_H3k4me1 <- function(chr, res, ChiP_NAME, kmeans_cluster_assigment, CELL_LINE, ChiP_data_already_loaded=FALSE) ## this function tries to get the name of each domain depending on the H3k4me1 signal
{
get_clusters_bins_xy_simple <- function()
{
cluster_vec = 1:length(initial_clusters)
cluster_indices = unique(cluster_vec)
cluster_bins = lapply(cluster_indices, function(v)
{
indices = which(cluster_vec==v)
bin_names[unlist(initial_clusters[indices])]
})
names(cluster_bins) = cluster_indices
return(cluster_bins)
}
initial_clusters = res$initial_clusters
# cat(length(initial_clusters), '\n')
bin_names = res$bin_names
# scaled_data = res$atanh_c_trend_mean_hkmeans_list[[1]]$data
# rownames(scaled_data) = colnames(scaled_data) = as.character(1:nrow(scaled_data))
# rownames(scaled_data) = as.character(1:nrow(scaled_data))
############################################################
chrs = as.character(chr)
chr_bin_domain_tmp = lapply(chrs, function(chr) get_clusters_bins_xy_simple())
names( chr_bin_domain_tmp ) = chrs ## can use mapply
chr_bin_domain = lapply(chrs, function(v) data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(as.numeric(names(chr_bin_domain_tmp[[v]])), sapply(chr_bin_domain_tmp[[v]], length)) ))
cluster_flag = 0
if( !is.null(kmeans_cluster_assigment) ) ## return signals at cluster level
{
cluster_flag = 1
chr_bin_domain[[1]]$intra_domain = kmeans_cluster_assigment[chr_bin_domain[[1]]$intra_domain]
}
names(chr_bin_domain) = chrs
chr_bin_domain = do.call(rbind, chr_bin_domain)
# ############################################################
# chr_bin_domain_tmp = lapply(chrs, function(chr) get_clusters_bins_xy_simple())
# names( chr_bin_domain_tmp ) = chrs ## can use mapply
# chr_bin_domain = lapply(chrs, function(v) data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(names(chr_bin_domain_tmp[[v]]), sapply(chr_bin_domain_tmp[[v]], length)) ))
# names(chr_bin_domain) = chrs
# chr_bin_domain = do.call(rbind, chr_bin_domain)
############################################################
# chip_data_dir = '/mnt/etemp/Yuanlong/nas_yliu/1.HiC/12.Data/'
# chip_data_dir = '/mnt/nas_marco/PRIVATE/Yuanlong/1.HiC/12.Data/'
# CELL_LINE_CHIP = c('5.GM12878_ChiP', '12.NHEK_ChiP', '14.HUVEC_ChiP')[1] ## USE GM as a TEST
if(!ChiP_data_already_loaded)
{
if(CELL_LINE %in% c('GM12878', 'AWS_GM12878')) CELL_LINE_CHIP = '5.GM12878_ChiP'
if(CELL_LINE %in% c('NHEK', 'AWS_NHEK')) CELL_LINE_CHIP = '12.NHEK_ChiP'
if(CELL_LINE %in% c('HUVEC', 'AWS_HUVEC')) CELL_LINE_CHIP = '14.HUVEC_ChiP'
if(CELL_LINE %in% c('HMEC', 'AWS_HMEC')) CELL_LINE_CHIP = '18.HMEC_ChiP'
if(CELL_LINE %in% c('K562', 'AWS_K562')) CELL_LINE_CHIP = '16.K562_ChiP'
if(CELL_LINE %in% c('Hela', 'AWS_Hela')) CELL_LINE_CHIP = '17.Hela_ChiP'
if(CELL_LINE %in% c('IMR90', 'AWS_IMR90')) CELL_LINE_CHIP = '19.IMR90_ChiP'
if(CELL_LINE=='BONEV_NPC') CELL_LINE_CHIP = '10.BONEV_NPC'
if(CELL_LINE=='BONEV_ES') CELL_LINE_CHIP = '9.BONEV_ES'
CHiP_Rdata = paste0(chip_data_dir, CELL_LINE_CHIP, '/ChiP_signals_', bin_size/1E3, 'kb_list.Rdata')
}
load(CHiP_Rdata)
ChiP_NAMEs = names( ChiP_signals_list )
# ChiP_signals_bin_domain_list = lapply( ChiP_signals_list, function(v) merge(v, chr_bin_domain) ) ## merge the info
ChiP_signals_bin_domain_list = lapply( ChiP_signals_list, function(v) {dt=merge(v, chr_bin_domain, all.y=T);dt[is.na(dt)] <- 0; return(dt)} ) ## merge the info
############################################################
domain_info_ChiP = ChiP_signals_bin_domain_list[[ChiP_NAME]]
if(cluster_flag)
{
if(ChiP_NAME=='ALL') ## when considering all the ChiP_NAMEs
{
his_list = lapply( ChiP_NAMEs, function(ChiP_NAME)
{
domain_info_ChiP = ChiP_signals_bin_domain_list[[ChiP_NAME]]
tapply(domain_info_ChiP[[paste0(ChiP_NAME, '_mean')]], domain_info_ChiP$intra_domain, mean)
})
his = do.call(rbind, his_list)
rownames(his) = ChiP_NAMEs
return(his)
}
hi = tapply(domain_info_ChiP[[paste0(ChiP_NAME, '_mean')]], domain_info_ChiP$intra_domain, mean)
return(hi)
}
# PC1 = get_PCs(scaled_data, which=1)
hello = tapply(domain_info_ChiP[[paste0(ChiP_NAME, '_mean')]], domain_info_ChiP$intra_domain, mean)
# [names(sort(PC1))]
# odd = order(as.numeric(names(sort(PC1))))
odd = order(as.numeric(names(sort(hello, decreasing=TRUE))))
return(odd)
}
## perform at inter-chr level, 2018-11-27
get_names_by_H3k4me1_ALL <- function(chrs, clusters, ChiP_NAME='ALL', return_chr_bin_domain_only=FALSE) ## this function tries to get the name of each domain depending on the H3k4me1 signal
{
get_clusters_bins_xy_simple <- function(chr)
{
if(ob_oe=='oe') sub_folder = paste0('./', CELL_LINE, '/oe_chr_', chr, '_', bin_size/1E3, 'kb_', compress_size, 'to1_', p_thresh)
if(ob_oe=='ob') sub_folder = paste0('./', CELL_LINE, '/ob_chr_', chr, '_', bin_size/1E3, 'kb_', compress_size, 'to1_', p_thresh)
compartments_Rdata_file = paste0(sub_folder, '/chr', chr, '_compartments_atanh_log_AB', ws, '.Rdata')
load(compartments_Rdata_file)
cluster_vec = 1:length(res$initial_clusters)
cluster_indices = unique(cluster_vec)
cluster_bins = lapply(cluster_indices, function(v)
{
indices = which(cluster_vec==v)
res$bin_names[unlist(res$initial_clusters[indices])]
})
names(cluster_bins) = cluster_indices
return(cluster_bins)
}
# initial_clusters = res$initial_clusters
# # cat(length(initial_clusters), '\n')
# bin_names = res$bin_names
# # scaled_data = res$atanh_c_trend_mean_hkmeans_list[[1]]$data
# # rownames(scaled_data) = colnames(scaled_data) = as.character(1:nrow(scaled_data))
# # rownames(scaled_data) = as.character(1:nrow(scaled_data))
############################################################
chrs = as.character(chrs)
chr_bin_domain_tmp = lapply(chrs, function(chr) get_clusters_bins_xy_simple(chr))
names( chr_bin_domain_tmp ) = chrs ## can use mapply
chr_bin_domain = lapply(chrs, function(v) data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(as.numeric(names(chr_bin_domain_tmp[[v]])), sapply(chr_bin_domain_tmp[[v]], length)) ))
names(chr_bin_domain) = chrs
chr_bin_domain = do.call(rbind, chr_bin_domain)
chr_bin_domain$intra_domain_tmp = paste0( chr_bin_domain$chr, '_', chr_bin_domain$intra_domain )
chr_bin_domain$inter_domain = clusters[ chr_bin_domain$intra_domain_tmp ]
if(return_chr_bin_domain_only == TRUE) return( chr_bin_domain )
# ############################################################
# chr_bin_domain_tmp = lapply(chrs, function(chr) get_clusters_bins_xy_simple())
# names( chr_bin_domain_tmp ) = chrs ## can use mapply
# chr_bin_domain = lapply(chrs, function(v) data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(names(chr_bin_domain_tmp[[v]]), sapply(chr_bin_domain_tmp[[v]], length)) ))
# names(chr_bin_domain) = chrs
# chr_bin_domain = do.call(rbind, chr_bin_domain)
############################################################
chip_data_dir = '/mnt/nas_yliu/1.HiC/12.Data/'
# chip_data_dir = '/mnt/nas_marco/PRIVATE/Yuanlong/1.HiC/12.Data/'
if(CELL_LINE=='GM12878') CELL_LINE_CHIP = c('5.GM12878_ChiP', '12.NHEK_ChiP')[1]
if(CELL_LINE=='NHEK') CELL_LINE_CHIP = c('5.GM12878_ChiP', '12.NHEK_ChiP')[2]
if(CELL_LINE=='BONEV_ES') CELL_LINE_CHIP = c('5.GM12878_ChiP', '12.NHEK_ChiP', '9.BONEV_ES')[3]
if(CELL_LINE=='BONEV_CN') CELL_LINE_CHIP = c('5.GM12878_ChiP', '12.NHEK_ChiP', '9.BONEV_ES', '11.BONEV_CN')[4]
CHiP_Rdata = paste0(chip_data_dir, CELL_LINE_CHIP, '/ChiP_signals_', bin_size/1E3, 'kb_list.Rdata')
load(CHiP_Rdata)
ChiP_NAMEs = names( ChiP_signals_list )
# ChiP_signals_bin_domain_list = lapply( ChiP_signals_list, function(v) merge(v, chr_bin_domain) ) ## merge the info
ChiP_signals_bin_domain_list = lapply( ChiP_signals_list, function(v) {dt=merge(v, chr_bin_domain, all.y=T);dt[is.na(dt)] <- 0; return(dt)} ) ## merge the info
############################################################
if(ChiP_NAME=='ALL') ## when considering all the ChiP_NAMEs
{
his_list = lapply( ChiP_NAMEs, function(ChiP_NAME)
{
domain_info_ChiP = ChiP_signals_bin_domain_list[[ChiP_NAME]]
tapply(domain_info_ChiP[[paste0(ChiP_NAME, '_mean')]], domain_info_ChiP$inter_domain, mean)
})
his = do.call(rbind, his_list)
rownames(his) = ChiP_NAMEs
return(his)
}
}
get_names_by_H3k4me1_tSNE <- function(scaled_data, initial_clusters, bin_names, ChiP_NAME, kmeans_cluster_assigment) ## this function tries to get the name of each domain depending on the H3k4me1 signal
{
get_clusters_bins_xy_simple <- function()
{
cluster_vec = 1:length(initial_clusters)
cluster_indices = unique(cluster_vec)
cluster_bins = lapply(cluster_indices, function(v)
{
indices = which(cluster_vec==v)
bin_names[unlist(initial_clusters[indices])]
})
names(cluster_bins) = cluster_indices
return(cluster_bins)
}
# initial_clusters = res$initial_clusters
cat(length(initial_clusters), '\n')
# bin_names = res$bin_names
# scaled_data = res$atanh_c_trend_mean_hkmeans_list[[1]]$data
# rownames(scaled_data) = colnames(scaled_data) = as.character(1:nrow(scaled_data))
# rownames(scaled_data) = as.character(1:nrow(scaled_data))
############################################################
chrs = as.character(chr)
chr_bin_domain_tmp = lapply(chrs, function(chr) get_clusters_bins_xy_simple())
names( chr_bin_domain_tmp ) = chrs ## can use mapply
chr_bin_domain = lapply(chrs, function(v) data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(as.numeric(names(chr_bin_domain_tmp[[v]])), sapply(chr_bin_domain_tmp[[v]], length)) ))
cluster_flag = 0
if( !is.null(kmeans_cluster_assigment) ) ## return signals at cluster level
{
cluster_flag = 1
chr_bin_domain[[1]]$intra_domain = kmeans_cluster_assigment[chr_bin_domain[[1]]$intra_domain]
}
names(chr_bin_domain) = chrs
chr_bin_domain = do.call(rbind, chr_bin_domain)
# ############################################################
# chr_bin_domain_tmp = lapply(chrs, function(chr) get_clusters_bins_xy_simple())
# names( chr_bin_domain_tmp ) = chrs ## can use mapply
# chr_bin_domain = lapply(chrs, function(v) data.frame( chr=paste0('chr', v), bin_index=as.numeric(unlist(chr_bin_domain_tmp[[v]])), intra_domain=rep(names(chr_bin_domain_tmp[[v]]), sapply(chr_bin_domain_tmp[[v]], length)) ))
# names(chr_bin_domain) = chrs
# chr_bin_domain = do.call(rbind, chr_bin_domain)
############################################################
chip_data_dir = '/mnt/nas_yliu/1.HiC/12.Data/'
# chip_data_dir = '/mnt/nas_marco/PRIVATE/Yuanlong/1.HiC/12.Data/'
if(CELL_LINE=='GM12878') CELL_LINE_CHIP = c('5.GM12878_ChiP', '12.NHEK_ChiP')[1]
if(CELL_LINE=='NHEK') CELL_LINE_CHIP = c('5.GM12878_ChiP', '12.NHEK_ChiP')[2]
CHiP_Rdata = paste0(chip_data_dir, CELL_LINE_CHIP, '/ChiP_signals_', bin_size/1E3, 'kb_list.Rdata')
load(CHiP_Rdata)
ChiP_NAMEs = names( ChiP_signals_list )
# ChiP_signals_bin_domain_list = lapply( ChiP_signals_list, function(v) merge(v, chr_bin_domain) ) ## merge the info
ChiP_signals_bin_domain_list = lapply( ChiP_signals_list, function(v) {dt=merge(v, chr_bin_domain, all.y=T);dt[is.na(dt)] <- 0; return(dt)} ) ## merge the info
############################################################
domain_info_ChiP = ChiP_signals_bin_domain_list[[ChiP_NAME]]
if(cluster_flag)
{
hi = tapply(domain_info_ChiP[[paste0(ChiP_NAME, '_mean')]], domain_info_ChiP$intra_domain, mean)
return(hi)
}
# PC1 = get_PCs(scaled_data, which=1)
hello = tapply(domain_info_ChiP[[paste0(ChiP_NAME, '_mean')]], domain_info_ChiP$intra_domain, mean)
# [names(sort(PC1))]
# odd = order(as.numeric(names(sort(PC1))))
odd = order(as.numeric(names(sort(hello, decreasing=FALSE))))
return(odd)
}
reorder_dendro <- function(hc_object, named_weights, return_g=FALSE, aggregateFun=mean)
{
get_children <- function(g, root_node)
{
leaves = V(g)[degree(g)==1]$name
children = intersect(leaves, ego(g, mode='out', root_node, order=diameter(g))[[1]]$name)
return(children)
}
hc_dendro = as.dendrogram(hc_object)
g = as.igraph(as.phylo(hc_dendro))
leaves = V(g)[degree(g)==1]$name
V(g)$weight = sapply(1:vcount(g), function(v) aggregateFun(named_weights[get_children(g, v)]))
if(return_g==TRUE) return(g)
swap_branches <- function(g, root_node)
{
twins = ego(g, mode='out', root_node, order=1, mindist=1)[[1]]$name
twins_weight = V(g)[twins]$weight
if(twins_weight[1] > twins_weight[2])
{
children_of_twin_A = get_children(g, twins[1])
children_of_twin_B = get_children(g, twins[2])
leaves = swap_names( leaves, children_of_twin_A, children_of_twin_B )
}
return(leaves)
}
swap_names <- function( leaves, names2swap_A, names2swap_B )
{
names2swap_indices = match(c(names2swap_A, names2swap_B), leaves)
leaves[ names2swap_indices ] = c(names2swap_B, names2swap_A)
return(leaves)
}
for( root_node in setdiff(V(g)$name, leaves) )
{
leaves = swap_branches(g, root_node)
# cat(leaves, '\n')
}
return(leaves)
}
get_cluser_assignment = function(hc, k_clusters, leaves_hclust_pc)
{
clusters_raw = cutree(hc, k_clusters)
clusters = tapply(as.numeric(names(clusters_raw)), clusters_raw, function(v) list(v))
od = rank(sapply( clusters, function(v) sort(match(v, as.numeric(leaves_hclust_pc)))[1]))
cluster_assignment = numeric(sum(sapply(clusters, length)))
for(j in 1:length(clusters)) cluster_assignment[clusters[[j]]] = od[j]
return( cluster_assignment )
}
get_cluster_boudaries <- function(hc, k_clusters, named_weights)
{
len = length(labels(hc))
clusters_raw = cutree(hc, k_clusters)
clusters = tapply(as.numeric(names(clusters_raw)), clusters_raw, function(v) list(v))
clusters_pc_rank = lapply(clusters, function(v) unname(sort(rank(named_weights)[v])))
bondaries = sapply(clusters_pc_rank, function(v) tail(v,1))
return(setdiff(bondaries, c(1, len)))
}
# get_cluser_vector <- function(hc, k_clusters, named_weights) ## get cluster assignment of 1,2,3,4,5... (A1, A2, ...)
# {
# clusters_raw = cutree(hc, k_clusters)
# clusters = tapply(as.numeric(names(clusters_raw)), clusters_raw, function(v) list(v))
# clusters_pc_rank = unname(rank(sapply(clusters, function(v) unname(sort(rank(named_weights)[v]))[1])))
# cluster_vector = numeric()
# for( i in 1:length(clusters) ) cluster_vector[ clusters[[i]] ] = clusters_pc_rank[i]
# return( cluster_vector )
# }
## if return binary tree, A1, A2, B1, B2 are forced to be returned
get_cluser_levels <- function(hc_ordered, k_clusters, balanced_4_clusters=FALSE) ## get the detailed A1, A2, ..., B1, B2...
{
assign_twins_name <- function(graph, node)
{
twins = ego(graph, node, mode='out', order=1, mindist=1)[[1]]$name
V(graph)[twins]$level_name = paste0(V(graph)[node]$level_name, '.', c(2,1))
if(node==V(graph)[1]$name) V(graph)[twins]$level_name = c('B', 'A')
return(graph)
}
if(k_clusters==Inf) k_clusters = length(labels(as.dendrogram(hc_ordered)))
#################################################
graph = as.igraph(as.phylo(hc_ordered))
leave_names = get_leaves(graph)
bfs_names = bfs(graph, 1)$order$name
dfs_names = dfs(graph, 1)$order$name
V(graph)[1]$level_name = ''
for( node in bfs_names )
{
graph = assign_twins_name(graph, node)
# if( !any(is.na(V(graph)[common_father_name]$level_name)) ) break ## when all common_father_name have level_name
if( !any(is.na(V(graph)$level_name)) ) break ## when all common_father_name have level_name
}
if( balanced_4_clusters==TRUE ) ##A1, A2, B1, B2
{
branch_root_name = c('A.1', 'A.2', 'B.1', 'B.2')
branch_root = match(branch_root_name, V(graph)$level_name)
children = ego(graph, order = diameter(graph), nodes = branch_root, mode = 'out', mindist = 0) ## mindist==0, when itself is a branch
tmp = lapply( children, function(v) intersect(leave_names, v$name) )
cluster_labels = rep(branch_root_name, sapply(tmp, length))
names(cluster_labels) = unlist( tmp )
cluster_labels = cluster_labels[ as.character(1:length(cluster_labels)) ]
return(cluster_labels)
}
#################################################
clusters_raw = cutree(hc_ordered, k_clusters)[labels(hc_ordered)] ## labels are ordered according to pc
clusters = tapply(as.numeric(names(clusters_raw)), clusters_raw, function(v) list(v))[unique(clusters_raw)]
names(clusters) = 1:k_clusters # named by pc order
## get the vector. Named from 1 to 5 from left leaves to right leaves
cluster_vector = rep( 1:k_clusters, sapply(clusters, length) )
names(cluster_vector) = labels(hc_ordered)
cluster_vector = cluster_vector[ as.character( sort(as.numeric(names(cluster_vector))) ) ]
#################################################
## which node is the common father of all nodes in a cluster
common_father_index = sapply( clusters, function(u)
{
if(length(u)==1) return( which(u==V(graph)$name) )
return(max(which(sapply(ego(graph, order = diameter(graph), nodes = V(graph), mode = 'out', mindist = 1), function(v) all(u %in% v$name) ))))
})
common_father_name = V(graph)[common_father_index]$name
## whether common_father_name are ordered
if(!all(diff(match( common_father_name, dfs_names )) >= 0)) stop('!!!!!!!!check get_all_children in header_funs.R')
level_names = V(graph)[common_father_name]$level_name ## label names are ordered
if(any(sort(level_names, decreasing=TRUE)!=level_names)) warning('!!!!!!!!Need to check get_all_children in header_funs.R')
cluster_labels = rep( level_names, sapply(clusters, length) )
names(cluster_labels) = labels(hc_ordered)
cluster_labels = cluster_labels[ as.character( sort(as.numeric(names(cluster_labels))) ) ]
return( list(cluster_vector=cluster_vector, cluster_labels=cluster_labels))
}
get_hkmeans_cluser_levels <- function(hk_cluster_centers, PC1)
{
hc = hclust(as.dist(my_dist(hk_cluster_centers)), method='com')
reordered_names = as.character(rank(PC1))
hc_ordered = dendextend::rotate(hc, reordered_names)
hk_clust_labels = get_cluser_levels(hc_ordered, k_clusters=length(PC1))$cluster_labels
return( hk_clust_labels )
}
## names_A_final is the rownames of the A_final
## names_A_final is matched to the names of the starting contact matrix
get_original_tad_indices <- function(names_A_final, TADs, bin_size)
{
start_pos = as.numeric(names_A_final[TADs$start_pos])
end_pos = as.numeric(names_A_final[TADs$end_pos])
start_pos_ori = (start_pos - 1)*bin_size + 1
end_pos_ori = end_pos*bin_size
TADs = data.frame( start_pos_ori=start_pos_ori, end_pos_ori=end_pos_ori )
return( TADs )
}
## This code updates the branch name
## Branches obtained from branches = lapply( res_inner, get_tree_v0 )
## The original branch name start from 1
update_branch_name <- function(branch, root_start)
{
V(branch)$left = V(branch)$left + root_start - 1
V(branch)$right = V(branch)$right + root_start - 1
V(branch)$name = paste('(',V(branch)$left, ',', V(branch)$right, ')', sep='')
return(branch)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.