library(sl3)
library(tmle3)
library(tmle3trans)
library(uuid)
library(future)
library(assertthat)
library(data.table)
library(ggplot2)
library(scales)
library(plyr)
library(gridExtra)
library(grid)
library(gtable)
set.seed(1234)
n <- 1e5
W1 <- sample(2:4, n, replace=TRUE, prob=c(0.3, 0.65, 0.05))
W2 <- sample(c(0.2, 0.9), n, replace=TRUE, prob=c(0.2, 0.8))
W3 <- sample(5:6, n, replace=TRUE, prob=c(0.55, 0.45))
#S <- rbinom(n, 1, expit(1.4 - 0.6 * W1 - 2 * W2 + 0.7 * W3))
S <- rbinom(n, 1, expit(1.4 / acosh(2 * W1) - 0.6 * W2 * (pmax(0, cos(W2 + 2)) + 1) * (W3 - 2.5)^2))
Y <- rnorm(n, -1 + .5 * W1 * sin(W3 + 8) + .2 * sqrt(abs(-W2^3 + exp(W2/(W3-3.5)))), .4)
data <- data.table(W1,W2,W3,S,Y)
node_list <- list(W = c("W1", "W2", "W3"), S = "S", Y = "Y")
data0 <- data[data[[node_list$S]] == 0, ]
data1 <- data[data[[node_list$S]] == 1, ]
### observed mean ###
YS0 <- data0[ ,colnames(data0) %in% node_list$Y, with=FALSE]
mean <- mean(as.matrix(YS0))
std <- sd(as.matrix(YS0)) / sqrt(length(as.matrix(YS0)))
# setup data for test
seed_fit = function(seed) {
set.seed(seed)
n <- 1000
W1 <- sample(2:4, n, replace=TRUE, prob=c(0.3, 0.65, 0.05))
W2 <- sample(c(0.2, 0.9), n, replace=TRUE, prob=c(0.2, 0.8))
W3 <- sample(5:6, n, replace=TRUE, prob=c(0.55, 0.45))
#S <- rbinom(n, 1, expit(1.4 - 0.6 * W1 - 2 * W2 + 0.7 * W3))
S <- rbinom(n, 1, expit(1.4 / acosh(2 * W1) - 0.6 * W2 * (pmax(0, cos(W2 + 2)) + 1) * (W3 - 2.5)^2))
Y <- rnorm(n, -1 + .5 * W1 * sin(W3 + 8) + .2 * sqrt(abs(-W2^3 + exp(W2/(W3-3.5)))), .4)
data <- data.table(W1,W2,W3,S,Y)
node_list <- list(W = c("W1", "W2", "W3"), S = "S", Y = "Y")
data0 <- data[data[[node_list$S]] == 0, ]
data1 <- data[data[[node_list$S]] == 1, ]
### 1. Plug-In ###
WS1 <- data1[ ,colnames(data1) %in% node_list$W, with=FALSE]
YS1 <- data1[ ,colnames(data1) %in% node_list$Y, with=FALSE]
WS0 <- data0[ ,colnames(data0) %in% node_list$W, with=FALSE]
fit_y <- glm(paste(node_list$Y, "~", paste(node_list$W, collapse = " + ")),
family = gaussian(), data = cbind(WS1, YS1))
beta_y_cov <- as.matrix(vcov(fit_y))
plugin_psis <- predict(fit_y, newdata = WS0, type = 'response')
plugin_psi <- mean(plugin_psis)
# delta method:
plugin_se <- sqrt(deltaMeanOLS(WS0, plugin_psis, beta_y_cov))
# empirical:
#plugin_se <- sd(plugin_psis)/sqrt(length(plugin_psis))
#plugin_CI95 <- wald_ci(plugin_psi, plugin_se)
### 2. Non-parametric ###
psi_0 = function(b) mean(W1 == b[1] & W2 == b[2] & W3 == b[3] & S == 0)
psi_1 = function(b) mean(W1 == b[1] & W2 == b[2] & W3 == b[3] & S == 1)
psi_2 = function(b) mean((W1 == b[1] & W2 == b[2] & W3 == b[3] & S == 1) * Y)
psi_s = mean(S == 0)
nonpar_psi = sum(apply(expand.grid(levels(factor(W1)), levels(factor(W2)), levels(factor(W3))), 1,
function(b) psi_0(b)/psi_s * psi_2(b)/ifelse(psi_1(b), psi_1(b), 1)))
# influence curve:
nonpar_ses = rowSums(apply(expand.grid(levels(factor(W1)), levels(factor(W2)), levels(factor(W3))), 1,
function(b) (psi_0(b) * (W1 == b[1] & W2 == b[2] & W3 == b[3] & S == 1))/(psi_s * ifelse(psi_1(b), psi_1(b), 1)) *
(Y - psi_2(b)/ifelse(psi_1(b), psi_1(b), 1)) +
(W1 == b[1] & W2 == b[2] & W3 == b[3] & S == 0)/psi_s *
(psi_2(b)/ifelse(psi_1(b), psi_1(b), 1) - nonpar_psi)))
nonpar_se = sd(nonpar_ses) / sqrt(n)
nonpar_CI95 <- wald_ci(nonpar_psi, nonpar_se)
### 3. SL + TML ###
tmle_spec <- tmle_AOT(1, 0)
# define data
tmle_task <- tmle_spec$make_tmle_task(data, node_list)
# define learners
qlib <- make_learner_stack(
"Lrnr_mean",
"Lrnr_glm_fast",
"Lrnr_xgboost"
)
glib <- make_learner_stack(
"Lrnr_mean",
"Lrnr_glm_fast",
"Lrnr_xgboost"
)
ls_metalearner <- make_learner(Lrnr_nnls)
bn_metalearner <- make_learner(
Lrnr_solnp, metalearner_logistic_binomial,
loss_loglik_binomial
)
Q_learner <- make_learner(Lrnr_sl, qlib, ls_metalearner)
g_learner <- make_learner(Lrnr_sl, glib, bn_metalearner)
#g_learner <- make_learner(Lrnr_glm)
learner_list <- list(Y = Q_learner, S = g_learner)
# estimate likelihood
initial_likelihood <- tmle_spec$make_initial_likelihood(tmle_task, learner_list)
sl_psis <- initial_likelihood$get_likelihood(tmle_task, "Y")[S==0]
sl_psi <- mean(sl_psis)
sl_se <- sd(sl_psis)/sqrt(length(sl_psis))
sl_CI95 <- wald_ci(sl_psi, sl_se)
# define update method (submodel + loss function)
updater <- tmle3_Update$new()
targeted_likelihood <- Targeted_Likelihood$new(initial_likelihood, updater)
# define parameter
tmle_param <- tmle_spec$make_params(tmle_task, targeted_likelihood)
# fit
tmle_fit <- fit_tmle3(tmle_task, targeted_likelihood, tmle_param, updater)
# extract results
tmle_summary <- tmle_fit$summary
tmle_psi <- tmle_summary$tmle_est
tmle_se <- tmle_summary$se
tmle_epsilon <- updater$epsilons[[1]]$Y
tmle_CI95 <- wald_ci(tmle_psi, tmle_se)
# loss
l2_diff_plugin <- (plugin_psi - mean)^2
l2_diff_nonpar <- (nonpar_psi - mean)^2
l2_diff_sl <- (sl_psi - mean)^2
l2_diff_tl <- (tmle_psi - mean)^2
return(c(plugin_psi, nonpar_psi, sl_psi, tmle_psi,
l2_diff_plugin, l2_diff_nonpar, l2_diff_sl, l2_diff_tl))
}
reps <- 100
plugin_psis <- c()
nonpar_psis <- c()
sl_psis <- c()
tl_psis <- c()
diff_plugin <- c()
diff_nonpar <- c()
diff_sl <- c()
diff_tl <- c()
for (i in 1:reps) {
fits <- seed_fit(i)
plugin_psis <- c(plugin_psis, fits[1])
nonpar_psis <- c(nonpar_psis, fits[2])
sl_psis <- c(sl_psis, fits[3])
tl_psis <- c(tl_psis, fits[4])
diff_plugin <- c(diff_plugin, fits[5])
diff_nonpar <- c(diff_nonpar, fits[6])
diff_sl <- c(diff_sl, fits[7])
diff_tl <- c(diff_tl, fits[8])
}
# estimator
dat_psis <- data.frame(Method=rep(c("NP", "TL"), each=reps),
Estimator=c(nonpar_psis, tl_psis))
mu <- ddply(dat_psis, "Method", summarise, grp.mean=mean(Estimator))
plt_hist <- ggplot(dat_psis, aes(x=Estimator, color=Method)) +
geom_histogram(fill="white", position="dodge") +
geom_vline(data=mu, aes(xintercept=grp.mean, color=Method),
linetype="dashed") +
geom_vline(aes(xintercept=mean, color='Truth'))
theme(legend.position="top")
# loss
dat_diff <- data.frame(Simulation_No.=rep(1:reps, 2),
Method=rep(c("NP", "TL"), each=reps),
Loss_l2=c(diff_nonpar, diff_tl))
mse <- ddply(dat_diff, "Method", summarise, grp.mean=mean(Loss_l2))
plt_plot <- ggplot(data=dat_diff, aes(x=Simulation_No., y=Loss_l2, group=Method)) +
geom_point(aes(color=Method)) +
geom_hline(data=mse, aes(yintercept=grp.mean, color=Method),
linetype="dashed")
# summary
truth <- mean
sample_mean <- c(mean(nonpar_psis), mean(tl_psis))
sample_sd <- c(sd(nonpar_psis), sd(tl_psis))
mse <- c(mean(diff_nonpar), mean(diff_tl))
dat_summary <- data.frame(Method=c("NP", "TL"), Truth=truth,
Sample_Mean=sample_mean, Sample_Sd=sample_sd,
MSE=mse)
g <- tableGrob(dat_summary, rows = NULL)
g <- gtable_add_grob(g,
grobs = rectGrob(gp = gpar(fill = NA, lwd = 2)),
t = 2, b = nrow(g), l = 1, r = ncol(g))
g <- gtable_add_grob(g,
grobs = rectGrob(gp = gpar(fill = NA, lwd = 2)),
t = 1, l = 1, r = ncol(g))
grid.draw(g)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.