#############################################################################################################
# Authors:
# Florian Rohart, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
# Kim-Anh Le Cao, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
# Benoit Gautier, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
# Francois Bartolo, Institut National des Sciences Appliquees et Institut de Mathematiques, Universite de Toulouse et CNRS (UMR 5219), France
#
# created: 2013
# last modified: 05-10-2017
#
# Copyright (C) 2013
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#############################################################################################################
# ========================================================================================================
# tune.splsda: chose the optimal number of parameters per component on a splsda method
# ========================================================================================================
# X: a list of data sets (called 'blocks') matching on the same samples. Data in the list should be arranged in samples x variables, with samples order matching in all data sets. \code{NA}s are not allowed.
# Y: a factor or a class vector for the discrete outcome.
# indY: to supply if Y is missing, indicate the position of the outcome in the list X.
# ncomp: numeric vector of length the number of blocks in \code{X}. The number of components to include in the model for each block (does not necessarily need to take the same value for each block). By default set to 2 per block.
# test.keepX: list of length, length(X). each test.keepX[[i]] is a grid of keepX among which to chose the optimal one
# already.tested.X: list of length, length(X). Each already.tested.X[[i]] is a vector giving the keepX on the components that were already tuned
# validation: Mfold or loo cross validation
# folds: if validation=Mfold, how many folds?
# dist: distance to classify samples. see predict
# measure: one of c("overall","BER"). Accuracy measure used in the cross validation processs
# weighted: optimise the weighted or not-weighted prediction
# progressBar: show progress,
# tol: Convergence stopping value.
# max.iter: integer, the maximum number of iterations.
# near.zero.var: boolean, see the internal \code{\link{nearZeroVar}} function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations
# nrepeat: number of replication of the Mfold process
# design: the input design.
# scheme: the input scheme, one of "horst", "factorial" or ""centroid". Default to "centroid"
# scale: boleean. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE).
# init: intialisation of the algorithm, one of "svd" or "svd.single". Default to "svd"
# light.output: if FALSE, output the classification of each sample during each folds, on each comp, for each repeat
# cpus: number of cpus to use. default to no parallel
# name.save: if saving a file after each component
#' Tuning function for block.splsda method (N-integration with sparse
#' Discriminant Analysis)
#'
#' Computes M-fold or Leave-One-Out Cross-Validation scores based on a
#' user-input grid to determine the optimal parsity parameters values for
#' method \code{block.splsda}.
#'
#'
#' This tuning function should be used to tune the keepX parameters in the
#' \code{block.splsda} function (N-integration with sparse Discriminant
#' Analysis).
#'
#' M-fold or LOO cross-validation is performed with stratified subsampling
#' where all classes are represented in each fold.
#'
#' If \code{validation = "Mfold"}, M-fold cross-validation is performed. The
#' number of folds to generate is to be specified in the argument \code{folds}.
#'
#' If \code{validation = "loo"}, leave-one-out cross-validation is performed.
#' By default \code{folds} is set to the number of unique individuals.
#'
#' All combination of test.keepX values are tested. A message informs how many
#' will be fitted on each component for a given test.keepX.
#'
#' More details about the prediction distances in \code{?predict} and the
#' supplemental material of the mixOmics article (Rohart et al. 2017). Details
#' about the PLS modes are in \code{?pls}.
#'
#' BER is appropriate in case of an unbalanced number of samples per class as
#' it calculates the average proportion of wrongly classified samples in each
#' class, weighted by the number of samples in each class. BER is less biased
#' towards majority classes during the performance assessment.
#'
#' @param X numeric matrix of predictors. \code{NA}s are allowed.
#' @param Y \code{if(method = 'spls')} numeric vector or matrix of continuous
#' responses (for multi-response models) \code{NA}s are allowed.
#' @param indY To be supplied if Y is missing, indicates the position of the
#' matrix / vector response in the list \code{X}
#' @param ncomp the number of components to include in the model.
#' @param test.keepX A list of length the number of blocks in X (without the
#' outcome). Each entry of this list is a numeric vector for the different
#' keepX values to test for that specific block.
#' @param already.tested.X Optional, if \code{ncomp > 1} A numeric vector
#' indicating the number of variables to select from the \eqn{X} data set on
#' the firsts components.
#' @param validation character. What kind of (internal) validation to use,
#' matching one of \code{"Mfold"} or \code{"loo"} (see below). Default is
#' \code{"Mfold"}.
#' @param folds the folds in the Mfold cross-validation. See Details.
#' @param dist distance metric to use for \code{splsda} to estimate the
#' classification error rate, should be a subset of \code{"centroids.dist"},
#' \code{"mahalanobis.dist"} or \code{"max.dist"} (see Details).
#' @param measure Two misclassification measure are available: overall
#' misclassification error \code{overall} or the Balanced Error Rate \code{BER}
#' @param weighted tune using either the performance of the Majority vote or
#' the Weighted vote.
#' @param progressBar by default set to \code{TRUE} to output the progress bar
#' of the computation.
#' @param tol Convergence stopping value.
#' @param max.iter integer, the maximum number of iterations.
#' @param near.zero.var boolean, see the internal \code{\link{nearZeroVar}}
#' function (should be set to TRUE in particular for data with many zero
#' values). Default value is FALSE
#' @param nrepeat Number of times the Cross-Validation process is repeated.
#' @param design numeric matrix of size (number of blocks in X) x (number of
#' blocks in X) with 0 or 1 values. A value of 1 (0) indicates a relationship
#' (no relationship) between the blocks to be modelled. If \code{Y} is provided
#' instead of \code{indY}, the \code{design} matrix is changed to include
#' relationships to \code{Y}.
#' @param scheme Either "horst", "factorial" or "centroid". Default =
#' \code{centroid}, see reference.
#' @param scale boleean. If scale = TRUE, each block is standardized to zero
#' means and unit variances. Default = \code{TRUE}.
#' @param init Mode of initialization use in the algorithm, either by Singular
#' Value Decompostion of the product of each block of X with Y ("svd") or each
#' block independently ("svd.single"). Default = \code{svd}.
#' @param light.output if set to FALSE, the prediction/classification of each
#' sample for each of \code{test.keepX} and each comp is returned.
#' @param cpus Number of cpus to use when running the code in parallel.
#' @param name.save character string for the name of the file to be saved.
#' @return A list that contains: \item{error.rate}{returns the prediction error
#' for each \code{test.keepX} on each component, averaged across all repeats
#' and subsampling folds. Standard deviation is also output. All error rates
#' are also available as a list.} \item{choice.keepX}{returns the number of
#' variables selected (optimal keepX) on each component, for each block.}
#' \item{choice.ncomp}{returns the optimal number of components for the model
#' fitted with \code{$choice.keepX}. } \item{error.rate.class}{returns the
#' error rate for each level of \code{Y} and for each component computed with
#' the optimal keepX}
#'
#' \item{predict}{Prediction values for each sample, each \code{test.keepX},
#' each comp and each repeat. Only if light.output=FALSE}
#' \item{class}{Predicted class for each sample, each \code{test.keepX}, each
#' comp and each repeat. Only if light.output=FALSE}
#'
#' \item{cor.value}{compute the correlation between latent variables for
#' two-factor sPLS-DA analysis.}
#' @author Florian Rohart, Amrit Singh, Kim-Anh Lê Cao.
#' @seealso \code{\link{block.splsda}} and http://www.mixOmics.org for more
#' details.
#' @references Method:
#'
#' Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê
#' Cao K.A. (2016). DIABLO: multi omics integration for biomarker discovery.
#'
#' mixOmics article:
#'
#' Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for 'omics
#' feature selection and multiple data integration. PLoS Comput Biol 13(11):
#' e1005752
#' @keywords regression multivariate
#' @examples
#'
#'
#' # this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
#' data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna,
#' protein = breast.TCGA$data.train$protein)
#' # set up a full design where every block is connected
#' # could also consider other weights, see our mixOmics manuscript
#' design = matrix(1, ncol = length(data), nrow = length(data),
#' dimnames = list(names(data), names(data)))
#' diag(design) = 0
#' design
#' # set number of component per data set
#' ncomp = 5
#'
#' # Tuning the first two components
#' # -------------
#' \dontrun{
#' # definition of the keepX value to be tested for each block mRNA miRNA and protein
#' # names of test.keepX must match the names of 'data'
#' test.keepX = list(mrna = seq(10,40,20), mirna = seq(10,30,10), protein = seq(1,10,5))
#'
#' # the following may take some time to run, note that for through tuning
#' # nrepeat should be > 1
#' tune = tune.block.splsda(X = data, Y = breast.TCGA$data.train$subtype,
#' ncomp = ncomp, test.keepX = test.keepX, design = design, nrepeat = 3)
#'
#' tune$choice.ncomp
#' tune$choice.keepX
#'
#'
#'
#' # Only tuning the second component
#' # -------------
#'
#' already.mrna = 4 # 4 variables selected on comp1 for mrna
#' already.mirna = 2 # 2 variables selected on comp1 for mirna
#' already.prot = 1 # 1 variables selected on comp1 for protein
#'
#' already.tested.X = list(mrna = already.mrna, mirna = already.mirna, prot = already.prot)
#'
#' tune = tune.block.splsda(X = data, Y = breast.TCGA$data.train$subtype,
#' ncomp = 2, test.keepX = test.keepX, design = design,
#' already.tested.X = already.tested.X)
#'
#' tune$choice.keepX
#' }
#'
#' @export tune.block.splsda
tune.block.splsda = function (
X,
Y,
indY,
ncomp = 2,
test.keepX,
already.tested.X,
validation = "Mfold",
folds = 10,
dist = "max.dist",
measure = "BER", # one of c("overall","BER")
weighted = TRUE, # optimise the weighted or not-weighted prediction
progressBar = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
nrepeat = 1,
design,
scheme= "horst",
scale = TRUE,
init = "svd",
light.output = TRUE, # if FALSE, output the prediction and classification of each sample during each folds, on each comp, for each repeat
cpus,
name.save = NULL)
{
#-- checking general input parameters --------------------------------------#
#---------------------------------------------------------------------------#
#------------------#
#-- check entries --#
# check inpuy 'Y' and transformation in a dummy matrix
if(!missing(Y))
{
if (is.null(dim(Y)))
{
Y = factor(Y)
} else {
stop("'Y' should be a factor or a class vector.")
}
if (nlevels(Y) == 1)
stop("'Y' should be a factor with more than one level")
} else if(!missing(indY)) {
Y = X[[indY]]
if (is.null(dim(Y)))
{
Y = factor(Y)
} else {
stop("'Y' should be a factor or a class vector.")
}
if (nlevels(temp) == 1)
stop("'X[[indY]]' should be a factor with more than one level")
X = X[-indY] #remove Y from X to pass the arguments simpler to block.splsda
} else if(missing(indY)) {
stop("Either 'Y' or 'indY' is needed")
}
# there's a X and a Y, we force the data to be matrices
cl = lapply(X,class)
ind.no.matrix = which(sapply(cl, function(x) !any(x == "matrix")))
if(length(ind.no.matrix)>0){
X[ind.no.matrix] = lapply(X[ind.no.matrix], function(x) as.matrix(x))
}
#-- dist
dist = match.arg(dist, choices = c("max.dist", "centroids.dist", "mahalanobis.dist"), several.ok = FALSE)
#-- progressBar
if (!is.logical(progressBar))
stop("'progressBar' must be a logical constant (TRUE or FALSE).", call. = FALSE)
#-- ncomp
if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0)
stop("invalid number of variates, 'ncomp'.")
#-- validation
choices = c("Mfold", "loo")
validation = choices[pmatch(validation, choices)]
if (is.na(validation))
stop("'validation' must be either 'Mfold' or 'loo'")
if (validation == 'loo')
{
if (nrepeat != 1)
warning("Leave-One-Out validation does not need to be repeated: 'nrepeat' is set to '1'.")
nrepeat = 1
}
#-- measure
measure.input = measure
if(! measure %in% c("overall", "BER"))
stop("'measure' must be 'overall' or 'BER'")
#-- already.tested.X
if (missing(already.tested.X))
{
already.tested.X = NULL
} else {
if(is.null(already.tested.X))
stop("'already.tested.X' must be a vector of keepX values ")
# we require the same number of already tuned components on each block
if(length(unique(sapply(already.tested.X, length))) > 1)
stop("The same number of components must be already tuned for each block, in 'already.tested.X'")
if(any(sapply(already.tested.X, function(x) is.list(x))) == TRUE)
stop(" Each entry of 'already.tested.X' must be a vector of keepX values")
if(length(already.tested.X[[1]]) >= ncomp)
stop("'ncomp' needs to be higher than the number of components already tuned, which is length(already.tested.X)=",length(already.tested.X) , call. = FALSE)
}
if (any(is.na(validation)) || length(validation) > 1)
stop("'validation' should be one of 'Mfold' or 'loo'.", call. = FALSE)
#-- test.keepX
if(missing(test.keepX))
{
test.keepX = lapply(1:length(X),function(x){c(5,10,15)[which(c(5,10,15)<ncol(X[[x]]))]})
names(test.keepX) = names(X)
} else {
if(length(test.keepX) != length(X))
stop(paste("test.keepX should be a list of length ", length(X),", corresponding to the blocks: ", paste(names(X),collapse=", "), sep=""))
#aa = sapply(test.keepX, length)
#if (any(is.null(aa) | aa == 1 | !is.numeric(aa)))
#stop("Each entry of 'test.keepX' must be a numeric vector with more than two values", call. = FALSE)
}
l = sapply(test.keepX,length)
n = names(test.keepX)
temp = data.frame(l, n)
message(paste("You have provided a sequence of keepX of length: ", paste(apply(temp, 1, function(x) paste(x,collapse=" for block ")), collapse= " and "), ".\nThis results in ",prod(sapply(test.keepX,length)), " models being fitted for each component and each nrepeat, this may take some time to run, be patient!",sep=""))
if(missing(cpus))
{
parallel = FALSE
message(paste("You can look into the 'cpus' argument to speed up computation time.",sep=""))
} else {
parallel = TRUE
if(progressBar == TRUE)
message(paste("As code is running in parallel, the progressBar will only show 100% upon completion of each nrepeat/ component.",sep=""))
}
#-- end checking --#
#------------------#
#---------------------------------------------------------------------------#
#-- NA calculation ----------------------------------------------------#
misdata = c(sapply(X,anyNA), Y=FALSE) # Detection of missing data. we assume no missing values in the factor Y
is.na.A = vector("list", length = length(X))
for(q in 1:length(X))
{
if(misdata[q])
{
is.na.A[[q]] = is.na(X[[q]])
#ind.NA[[q]] = which(apply(is.na.A[[q]], 1, sum) > 0) # calculated only once
#ind.NA.col[[q]] = which(apply(is.na.A[[q]], 2, sum) >0) # indice of the col that have missing values. used in the deflation
}
}
#-- NA calculation ----------------------------------------------------#
#---------------------------------------------------------------------------#
# if some components have already been tuned (eg comp1 and comp2), we're only tuning the following ones (comp3 comp4 .. ncomp)
if ((!is.null(already.tested.X)) & length(already.tested.X) > 0)
{
comp.real = (length(already.tested.X[[1]]) + 1):ncomp
#check and match already.tested.X to X
if(length(already.tested.X[[1]]) >0)
{
if(length(unique(names(already.tested.X)))!=length(already.tested.X) | sum(is.na(match(names(already.tested.X),names(X)))) > 0)
stop("Each entry of 'already.tested.X' must have a unique name corresponding to a block of 'X'")
}
} else {
comp.real = 1:ncomp
}
# near zero var on the whole data sets. It will be performed inside each fold as well
if(near.zero.var == TRUE)
{
nzv.A = lapply(X, nearZeroVar)
for(q in 1:length(X))
{
if (length(nzv.A[[q]]$Position) > 0)
{
names.remove.X = colnames(X[[q]])[nzv.A[[q]]$Position]
X[[q]] = X[[q]][, -nzv.A[[q]]$Position, drop=FALSE]
warning("Zero- or near-zero variance predictors.\n Reset predictors matrix to not near-zero variance predictors.\n See $nzv for problematic predictors.")
if (ncol(X[[q]]) == 0)
stop(paste0("No more variables in",X[[q]]))
#need to check that the keepA[[q]] is now not higher than ncol(A[[q]])
if (any(test.keepX[[q]] > ncol(X[[q]])))
test.keepX[[q]][which(test.keepX[[q]] > ncol(X[[q]]))] = ncol(X[[q]])
}
}
}
if (parallel == TRUE)
{
cl <- makeCluster(cpus, type = "SOCK")
clusterEvalQ(cl, library(mixOmics))
} else{cl=NULL}
N.test.keepX = nrow(expand.grid(test.keepX))
mat.error.rate = list()
error.per.class = list()
mat.sd.error = matrix(0,nrow = N.test.keepX, ncol = ncomp-length(already.tested.X[[1]]))#,
# dimnames = list(c(test.keepX), c(paste('comp', comp.real, sep=''))))
mat.mean.error = matrix(nrow = N.test.keepX, ncol = ncomp-length(already.tested.X[[1]]))#,
#dimnames = list(c(test.keepX), c(paste('comp', comp.real, sep=''))))
mat.error.rate = list()
error.per.class.keepX.opt=list()
error.per.class.keepX.opt.mean = matrix(0, nrow = nlevels(Y), ncol = length(comp.real),
dimnames = list(c(levels(Y)), c(paste0('comp', comp.real))))
error.opt.per.comp = matrix(nrow = nrepeat, ncol = length(comp.real), dimnames=list(paste("nrep",1:nrepeat,sep="."), paste0("comp", comp.real)))
if(light.output == FALSE)
prediction.all = class.all = list()
#save(list=ls(),file="temp3.Rdata")
# successively tune the components until ncomp: comp1, then comp2, ...
for(comp in 1:length(comp.real))
{
if (progressBar == TRUE)
cat("\ncomp",comp.real[comp], "\n")
result = MCVfold.block.splsda (X, Y, validation = validation, folds = folds, nrepeat = nrepeat, ncomp = 1 + length(already.tested.X[[1]]),
choice.keepX = already.tested.X, scheme = scheme, design=design, init=init, tol=tol,
test.keepX = test.keepX, measure = measure, dist = dist, scale=scale, weighted=weighted,
near.zero.var = near.zero.var, progressBar = progressBar, max.iter = max.iter, cl = cl,
misdata = misdata, is.na.A = is.na.A, parallel = parallel)
#returns error.rate for all test.keepX
# in the following, there is [[1]] because 'tune' is working with only 1 distance and 'MCVfold.block.splsda' can work with multiple distances
mat.error.rate[[comp]] = result[[measure]]$mat.error.rate[[1]]
mat.mean.error[, comp]=result[[measure]]$error.rate.mean[[1]]
if (!is.null(result[[measure]]$error.rate.sd[[1]]))
mat.sd.error[, comp]=result[[measure]]$error.rate.sd[[1]]
# confusion matrix for keepX.opt
error.per.class.keepX.opt[[comp]]=result[[measure]]$confusion[[1]]
error.per.class.keepX.opt.mean[, comp]=apply(result[[measure]]$confusion[[1]], 1, mean)
# error rate for best keepX
error.opt.per.comp[,comp] = mat.error.rate[[comp]][result[[measure]]$ind.keepX.opt[[1]],]
# best keepX
already.tested.X = result[[measure]]$choice.keepX
if(light.output == FALSE)
{
#prediction of each samples for each fold and each repeat, on each comp
class.all[[comp]] = result$class.comp[[1]]
#prediction.all[[comp]] = result$prediction.comp
}
# prepping the results and save a file, if necessary
if(!is.null(name.save))
{
rownames(mat.mean.error) = rownames(result[[measure]]$mat.error.rate[[1]])
colnames(mat.mean.error) = paste0("comp", comp.real)
names(mat.error.rate) = c(paste0("comp", comp.real[1:comp]))
names(error.per.class.keepX.opt) = c(paste0("comp", comp.real[1:comp]))
if(nrepeat > 1)
{
rownames(mat.sd.error) = rownames(result[[measure]]$mat.error.rate[[1]])
colnames(mat.sd.error) = paste0("comp", comp.real)
}
result = list(
error.rate = mat.mean.error,
error.rate.sd = mat.sd.error,
error.rate.all = mat.error.rate,
choice.keepX = already.tested.X,
error.rate.class = error.per.class.keepX.opt)
result$measure = measure.input
result$call = match.call()
class(result) = "tune.block.splsda"
save(result, file = paste0(name.save,".comp",comp.real[1],"to",comp.real[comp],".Rdata"))
}
}
rownames(mat.mean.error) = rownames(result[[measure]]$mat.error.rate[[1]])
colnames(mat.mean.error) = paste0("comp", comp.real)
names(mat.error.rate) = c(paste0("comp", comp.real))
names(error.per.class.keepX.opt) = c(paste0("comp", comp.real))
if(nrepeat > 1)
{
rownames(mat.sd.error) = rownames(result[[measure]]$mat.error.rate[[1]])
colnames(mat.sd.error) = paste0("comp", comp.real)
}
#close the cluster after ncomp
if (parallel == TRUE)
stopCluster(cl)
cat("\n")
# calculating the number of optimal component based on t.tests and the error.rate.all, if more than 3 error.rates(repeat>3)
if(nrepeat > 2 & length(comp.real) >1)
{
error.keepX = error.opt.per.comp
opt = t.test.process(error.opt.per.comp)
ncomp_opt = comp.real[opt]
} else {
ncomp_opt = error.keepX = NULL
}
result = list(
error.rate = mat.mean.error,
error.rate.sd = mat.sd.error,
error.rate.all = mat.error.rate,
choice.keepX = already.tested.X,
choice.ncomp = list(ncomp = ncomp_opt, values = error.keepX),
error.rate.class = error.per.class.keepX.opt)
result$measure = measure.input
result$call = match.call()
class(result) = "tune.block.splsda"
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.