#' Threshold-wise testing procedure for testing functional-on-scalar linear
#' models
#'
#' The function is used to fit and test functional linear models. It can be used
#' to carry out regression, and analysis of variance. It implements the
#' Threshold-wise testing procedure (TWT) for testing the significance of the
#' effects of scalar covariates on a functional population.
#'
#' @param formula An object of class "\code{\link{formula}}" (or one that can be
#' coerced to that class): a symbolic description of the model to be fitted.
#' Example: y ~ A + B where: y is a matrix of dimension n * p containing the
#' point-wise evaluations of the n functional data on p points or an object of
#' class \code{fd} (see \code{fda} package) containing the functional data set
#' A, B are n-dimensional vectors containing the values of two covariates.
#' Covariates may be either scalar or factors.
#' @param B The number of iterations of the MC algorithm to evaluate the
#' p-values of the permutation tests. The defualt is \code{B=1000}.
#' @param method Permutation method used to calculate the p-value of permutation
#' tests. Choose "\code{residuals}" for the permutations of residuals under
#' the reduced model, according to the Freedman and Lane scheme, and
#' "\code{responses}" for the permutation of the responses, according to the
#' Manly scheme.
#' @param dx step size for the point-wise evaluations of functional data. dx is
#' only used ia an object of class 'fd' is provided as response in the
#' formula.
#'
#' @returns An object of class `TWTlm`. The function \code{summary} is used to
#' obtain and print a summary of the results. An object of class
#' "\code{ITPlm}" is a list containing at least the following components:
#'
#' - `call`: Call of the function.
#' - `design_matrix`: Design matrix of the linear model.
#' - `unadjusted_pval_F`: Unadjusted p-value function of the F test.
#' - `adjusted_pval_F`: Adjusted p-value function of the F test.
#' - `unadjusted_pval_part`: Unadjusted p-value functions of the functional
#' t-tests on each covariate, separately (rows) on each domain point
#' (columns).
#' - `adjusted_pval_part`: Adjusted p-values of the functional t-tests on each
#' covariate (rows) on each domain point (columns).
#' - `data.eval`: Evaluation of functional data.
#' - `coeff.regr.eval`: Evaluation of the regression coefficients.
#' - `fitted.eval`: Evaluation of the fitted values.
#' - `residuals.eval`: Evaluation of the residuals.
#' - `R2.eval`: Evaluation of the functional R-squared.
#'
#' @seealso See \code{\link{summary.TWTlm}} for summaries and
#' \code{\link{plot.TWTlm}} for plotting the results. See also
#' \code{\link{TWTaov}} to fit and test a functional analysis of variance
#' applying the TWT, and \code{\link{TWT2}} for two-population test.
#'
#' @references
#' Abramowicz, K., Pini, A., Schelin, L., Stamm, A., & Vantini, S. (2022).
#' “Domain selection and familywise error rate for functional data: A unified
#' framework. \emph{Biometrics} 79(2), 1119-1132.
#'
#' D. Freedman and D. Lane (1983). A Nonstochastic Interpretation of Reported
#' Significance Levels. \emph{Journal of Business & Economic Statistics} 1(4),
#' 292-298.
#'
#' B. F. J. Manly (2006). Randomization, \emph{Bootstrap and Monte Carlo Methods
#' in Biology}. Vol. 70. CRC Press.
#'
#' @export
#' @examples
#' # Importing the NASA temperatures data set
#' data(NASAtemp)
#' # Defining the covariates
#' temperature <- rbind(NASAtemp$milan, NASAtemp$paris)
#' groups <- c(rep(0, 22), rep(1, 22))
#'
#' # Performing the TWT
#' TWT.result <- TWTlm(temperature ~ groups, B = 100L)
#' # Summary of the TWT results
#' summary(TWT.result)
#'
#' # Plot of the TWT results
#' layout(1)
#' plot(
#' TWT.result,
#' main = 'NASA data',
#' plot_adjpval = TRUE,
#' xlab = 'Day',
#' xrange = c(1, 365)
#' )
#'
#' # All graphics on the same device
#' layout(matrix(1:6, nrow = 3, byrow = FALSE))
#' plot(
#' TWT.result,
#' main = 'NASA data',
#' plot_adjpval = TRUE,
#' xlab = 'Day',
#' xrange = c(1, 365)
#' )
TWTlm <- function(formula,
B = 1000L,
method = "residuals",
dx = NULL) {
cl <- match.call()
coeff <- formula2coeff(formula, dx = dx)
design_matrix <- formula2design_matrix(formula, coeff)
nvar <- dim(design_matrix)[2] - 1
var_names <- colnames(design_matrix)
p <- dim(coeff)[2]
n <- dim(coeff)[1]
# Univariate permutations
regr0 <- stats::lm.fit(design_matrix, coeff)
# Test statistics
Sigma <- chol2inv(regr0$qr$qr)
resvar <- colSums(regr0$residuals^2) / regr0$df.residual
se <- sqrt(
matrix(
diag(Sigma),
nrow = nvar + 1,
ncol = p,
byrow = FALSE
) * matrix(
resvar,
nrow = nvar + 1,
ncol = p,
byrow = TRUE
)
)
T0_part <- abs(regr0$coeff / se)^2
if (nvar > 0) {
T0_glob <- colSums((regr0$fitted - matrix(
colMeans(regr0$fitted),
nrow = n,
ncol = p,
byrow = TRUE
))^2) / (nvar * resvar)
} else {
method <- "responses"
T0_glob <- numeric(p)
T0_part <- t(as.matrix(T0_part))
}
# Compute residuals
if (method == "residuals") {
# n residuals for each coefficient of basis expansion (1:p)
# and for each partial test + global test (nvar+1)
# Saved in array of dim (nvar+1,n,p)
# Extracting the part after ~ on formula.
# This will not work if the formula
# is longer than 500 char
formula_const <- deparse(formula[[3]], width.cutoff = 500L)
design_matrix_names2 <- design_matrix
var_names2 <- var_names
coeffnames <- paste('coeff[,', as.character(1:p), ']', sep = '')
formula_temp <- coeff ~ design_matrix
mf_temp <- cbind(
stats::model.frame(formula_temp)[-((p + 1):(p + nvar + 1))],
as.data.frame(design_matrix[, -1])
)
if (length(grep('factor', formula_const)) > 0) {
index_factor <- grep('factor', var_names)
replace_names <- paste('group', (1:length(index_factor)), sep = '')
var_names2[index_factor] <- replace_names
colnames(design_matrix_names2) <- var_names2
}
residui <- array(dim = c(nvar + 1, n, p))
fitted_part <- array(dim = c(nvar + 1, n, p))
formula_coeff_part <- vector('list', nvar + 1)
regr0_part <- vector('list', nvar + 1)
# The first one is the intercept. Treated as special case after loop
for (ii in 2:(nvar + 1)) {
var_ii <- var_names2[ii]
variables_reduced <- var_names2[-c(1, which(var_names2 == var_ii))]
if (nvar > 1) {
formula_temp <- paste(variables_reduced, collapse = ' + ')
} else {
# Removing the unique variable -> reduced model only has intercept ter
formula_temp <- '1'
}
formula_temp2 <- coeff ~ design_matrix_names2
mf_temp2 <- cbind(
stats::model.frame(formula_temp2)[-((p + 1):(p + nvar + 1))],
as.data.frame(design_matrix_names2[, -1])
)
formula_coeff_temp <- paste(coeffnames, '~', formula_temp)
formula_coeff_part[[ii]] <- sapply(formula_coeff_temp, stats::as.formula)
regr0_part[[ii]] <- lapply(formula_coeff_part[[ii]], stats::lm, data = mf_temp2)
residui[ii, , ] <- simplify2array(lapply(regr0_part[[ii]], extract_residuals))
fitted_part[ii, , ] <- simplify2array(lapply(regr0_part[[ii]], extract_fitted))
}
ii <- 1 # intercept
formula_temp <- paste(formula_const, ' -1', sep = '')
formula_coeff_temp <- paste(coeffnames, '~', formula_temp)
formula_coeff_part[[ii]] <- sapply(formula_coeff_temp, stats::as.formula)
regr0_part[[ii]] <- lapply(formula_coeff_part[[ii]], stats::lm, data = mf_temp)
residui[ii, , ] <- simplify2array(lapply(regr0_part[[ii]], extract_residuals))
fitted_part[ii, , ] <- simplify2array(lapply(regr0_part[[ii]], extract_fitted))
}
cli::cli_h1("Point-wise tests")
# CMC algorithm
T_glob <- matrix(ncol = p, nrow = B)
T_part <- array(dim = c(B, nvar + 1, p))
for (perm in 1:B) {
# the F test is the same for both methods
if (nvar > 0) {
permutazioni <- sample(n)
coeff_perm <- coeff[permutazioni, ]
}else{ # Test on intercept permuting signs
signs <- stats::rbinom(n, 1, 0.5) * 2 - 1
coeff_perm <- coeff * signs
}
regr_perm <- stats::lm.fit(design_matrix, coeff_perm)
Sigma <- chol2inv(regr_perm$qr$qr)
resvar <- colSums(regr_perm$residuals^2) / regr_perm$df.residual
if (nvar > 0) {
T_glob[perm, ] <- colSums((
regr_perm$fitted - matrix(
colMeans(regr_perm$fitted),
nrow = n,
ncol = p,
byrow = TRUE
)
)^2) / (nvar * resvar)
}
# Partial tests: differ depending on the method
if (method == "responses") {
se <- sqrt(
matrix(
diag(Sigma),
nrow = nvar + 1,
ncol = p,
byrow = FALSE
) * matrix(
resvar,
nrow = nvar + 1,
ncol = p,
byrow = TRUE
)
)
T_part[perm, , ] <- abs(regr0$coeff / se)^2
} else if (method == "residuals"){
residui_perm <- residui[, permutazioni, ]
regr_perm_part <- vector('list', nvar + 1)
for (ii in 1:(nvar + 1)) {
coeff_perm <- fitted_part[ii, , ] + residui_perm[ii, , ]
regr_perm <- stats::lm.fit(design_matrix, coeff_perm)
Sigma <- chol2inv(regr_perm$qr$qr)
resvar <- colSums(regr_perm$residuals^2) / regr_perm$df.residual
se <- sqrt(
matrix(
diag(Sigma),
nrow = nvar + 1 ,
ncol = p,
byrow = FALSE
) * matrix(
resvar,
nrow = nvar + 1,
ncol = p,
byrow = TRUE
)
)
T_part[perm, ii, ] <- abs(regr_perm$coeff / se)[ii, ]^2
}
}
}
pval_glob <- numeric(p)
pval_part <- matrix(nrow = nvar + 1, ncol = p)
for (i in 1:p) {
pval_glob[i] <- sum(T_glob[, i] >= T0_glob[i]) / B
pval_part[, i] <- colSums(T_part[, , i] >= matrix(
T0_part[, i],
nrow = B,
ncol = nvar + 1,
byrow = TRUE
)) / B
}
cli::cli_h1("Threshold-wise tests")
# F-test
thresholds <- c(0, sort(unique(pval_glob)), 1)
adjusted.pval_glob <- pval_glob # we initialize the adjusted p-value as unadjusted one
pval.tmp <- rep(0, p) # inizialize p-value vector resulting from combined test
for (test in 1:length(thresholds)) {
# test below threshold
points.1 <- which(pval_glob <= thresholds[test])
T0_comb <- sum(T0_glob[points.1], na.rm = TRUE) # combined test statistic
T_comb <- (rowSums(T_glob[, points.1, drop = FALSE], na.rm = TRUE))
pval.test <- mean(T_comb >= T0_comb)
pval.tmp[points.1] <- pval.test
# compute maximum
adjusted.pval_glob <- apply(rbind(adjusted.pval_glob, pval.tmp), 2, max)
# test above threshold
points.2 <- which(pval_glob > thresholds[test])
T0_comb <- sum(T0_glob[points.2]) # combined test statistic
T_comb <- rowSums(T_glob[, points.2, drop = FALSE], na.rm = TRUE)
pval.test <- mean(T_comb >= T0_comb)
pval.tmp[points.2] <- pval.test
# compute maximum
adjusted.pval_glob <- apply(rbind(adjusted.pval_glob, pval.tmp), 2, max)
}
# F-tests on single factors
thresholds <- c(0, sort(unique(as.numeric(pval_part))), 1)
adjusted.pval_part <- pval_part # we initialize the adjusted p-value as unadjusted one
for (ii in 1:(nvar + 1)) {
pval.tmp <- rep(0, p)
for (test in 1:length(thresholds)) {
# test below threshold
points.1 <- which(pval_part[ii, ] <= thresholds[test])
T0_comb <- sum(T0_part[ii, points.1], na.rm = TRUE) # combined test statistic
T_comb <- rowSums(T_part[, ii, points.1, drop = FALSE], na.rm = TRUE)
pval.test <- mean(T_comb >= T0_comb)
pval.tmp[points.1] <- pval.test
# compute maximum
adjusted.pval_part[ii, ] <- apply(rbind(adjusted.pval_part[ii, ], pval.tmp), 2, max)
# test above threshold
points.2 <- which(pval_part[ii, ] > thresholds[test])
T0_comb <- sum(T0_part[ii, points.2]) # combined test statistic
T_comb <- rowSums(T_part[, ii, points.2, drop = FALSE], na.rm = TRUE)
pval.test <- mean(T_comb >= T0_comb)
pval.tmp[points.2] <- pval.test
# compute maximum
adjusted.pval_part[ii, ] <- apply(rbind(adjusted.pval_part[ii, ], pval.tmp), 2, max)
}
}
coeff.regr <- regr0$coeff
coeff.t <- coeff.regr
fitted.regr <- regr0$fitted
fitted.t <- fitted.regr
rownames(adjusted.pval_part) <- var_names
rownames(coeff.t) <- var_names
rownames(coeff.regr) <- var_names
rownames(pval_part) <- var_names
data.eval <- coeff
residuals.t <- data.eval - fitted.t
ybar.t <- colMeans(data.eval)
npt <- p
R2.t = colSums((fitted.t - matrix(
data = ybar.t,
nrow = n,
ncol = npt,
byrow = TRUE
))^2) / colSums((data.eval - matrix(
data = ybar.t,
nrow = n,
ncol = npt,
byrow = TRUE
))^2)
cli::cli_h1("Threshold-Wise Testing completed")
out <- list(
call = cl,
design_matrix = design_matrix,
unadjusted_pval_F = pval_glob,
adjusted_pval_F = adjusted.pval_glob,
unadjusted_pval_part = pval_part,
adjusted_pval_part = adjusted.pval_part,
data.eval = coeff,
coeff.regr.eval = coeff.t,
fitted.eval = fitted.t,
residuals.eval = residuals.t,
R2.eval = R2.t
)
class(out) <- "TWTlm"
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.