R/fit.adisop.R

Defines functions fit.adisop

Documented in fit.adisop

## File Name: fit.adisop.R
## File Version: 2.255


#---- Fit ADISOP model
fit.adisop <- function( freq.correct, wgt, conv=.0001,
        maxit=100, epsilon=.01, progress=TRUE, calc.ll=TRUE )
{
    eps2 <- epsilon
    M1 <- as.matrix( freq.correct )
    wgt <- as.matrix(wgt)
    freq.correct1 <-  ( freq.correct + eps2/2 ) / ( 1 + eps2 )
    wgt2 <- wgt / sqrt( ( freq.correct1 * ( 1 - freq.correct1 ) ) )
    RR <- nrow(freq.correct)
    CC <- ncol(freq.correct)
    # auxiliary variables
    scores <- 0:(RR-1)
    item.psx <- colSums( freq.correct * wgt ) / colSums( wgt )
    # initialization
    dfr0 <- data.frame( stud.index=rep(1:RR, CC),
                        item.index=rep(1:CC,each=RR),
                        stud.p=rep( scores,CC),
                        item.p=rep( item.psx, each=RR ),
                        wgt2=matrix( as.matrix( wgt2 ), RR*CC, 1 ),
                        p0=matrix( as.matrix(freq.correct ), RR*CC, 1 ) )
    dfr0$studPitem.p <- dfr0$stud.p + dfr0$item.p
    dfr0 <- dfr0[ order( dfr0$p0), ]
    dfr0$psort.index <- rank( dfr0$p0 )
    # define matrix I
    I.matrix <- 0*M1
    I.matrix[ as.matrix(dfr0[, c('stud.index', 'item.index' ) ] ) ] <-
                dfr0$psort.index
    IS <- sum(I.matrix)
    Y <- Y0 <- I.matrix
    iter <- 0
    deviation <- 1000
    if (progress){
        cat('\n*******ADISOP Model*********\n')
    }

    #**** begin algorithm
    while( ( iter < maxit) & ( deviation > conv ) ){
        #*** start algorithm
        Y0 <- Y
        # row and column averages
        X1 <- rowMeans(Y0)
        X1 <- X1 - X1[1]
        X2 <- colMeans(Y0)
        X2 <- X2 - X2[1]
        # calculate sum
        Y <- outer( X1, X2, '+' )
        # preparation isotonic regression
        dfr0 <- data.frame( stud.index=rep(1:RR, CC),
                            item.index=rep(1:CC,each=RR),
                            stud.X=rep( X1,CC),
                            item.X=rep( X2, each=RR ),
                            wgt2=matrix( as.matrix( wgt2 ), RR*CC, 1 ),
                            Y=matrix( as.matrix( Y), RR*CC, 1 ),
                            I=matrix( as.matrix( I.matrix), RR*CC, 1 ) )
            # Y=X1 + X2
        dfr0 <- dfr0[ order( dfr0$I), ]
        dfr0$yf <- monoreg.rowwise( matrix( dfr0$Y, nrow=1 ),
                                    matrix(dfr0$wgt2,nrow=1) )[1,]
        Y <- 0*M1
        Y[ as.matrix(dfr0[, c('stud.index', 'item.index' ) ] ) ] <- dfr0$yf
        Y <- Y / sum(Y) * IS
        # calculate deviation
        deviation <- max( abs( Y - Y0 ))
        iter <- iter + 1
        if (progress){
            cat( 'Iteration', iter, '- Deviation=',  round( deviation, 6 ), '\n')
            utils::flush.console()
        }
    }
    #-------------- end algorithm

    #**** calculate link function
    dfr0 <- data.frame( stud.index=rep(1:RR, CC),
                            item.index=rep(1:CC,each=RR),
                            stud.p=rep( X1,CC),
                            item.p=rep( X2, each=RR ),
                            wgt=matrix( as.matrix(wgt), RR*CC, 1 ),
                            wgt2=matrix( as.matrix(wgt2), RR*CC, 1 ),
                            p0=matrix( as.matrix(freq.correct), RR*CC, 1 ) )
    dfr0$X1PX2 <- dfr0$stud.p + dfr0$item.p
    dfr0 <- dfr0[ order( dfr0$X1PX2), ]
    dfr0$yf <- monoreg.rowwise( matrix( dfr0$p0, nrow=1 ), matrix(dfr0$wgt2,nrow=1) )[1,]
    dfr0 <- dfr0[ order( dfr0$stud.index * 1000 + dfr0$item.index ), ]

    Y <- 0*M1
    Y[ as.matrix(dfr0[, c('stud.index', 'item.index' ) ] ) ] <- dfr0$yf
    G <- Y
    colnames(dfr0)[ colnames(dfr0)=='stud.p' ] <- 'person.sc'
    colnames(dfr0)[ colnames(dfr0)=='item.p' ] <- 'item.sc'
    colnames(dfr0)[ colnames(dfr0)=='p0' ] <- 'freq'
    colnames(dfr0)[ colnames(dfr0)=='yf' ] <- 'freq.fitted'
    # deviation criterion
    wgt1 <- ( wgt / colSums( wgt ) ) / ncol(wgt)
    fit <- sqrt( sum( ( M1-G  )^2 * wgt1  ) )
    #****
    # calculate likelihood
    ll <- NULL
    if (calc.ll){
        ll <- list( ll.ind=.calc.ll.isop( freq.correct, wgt, irtfitted=freq.correct) )
        ll$ll.adisop <- .calc.ll.isop( freq.correct, wgt, irtfitted=G )
        NW <- mean( colSums(wgt) )
        ll$llcase.ind <- ll$ll.ind/NW
        ll$llcase.adisop <- ll$ll.adisop/NW
            }
    # output
    res <- list( fX=G, ResX=M1-G, fit=fit, item.sc=X2,
                        person.sc=X1, ll=ll, freq.fitted=dfr0)
    return(res)
}
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.