R/fit.gradedresponse_alg.R

Defines functions .update.bcat.grm .update.b.grm .update.theta.grm .calc.ll.grm

## File Name: fit.gradedresponse_alg.R
## File Version: 1.174


#####################################################################
# calculate log likelihood function in graded response model
.calc.ll.grm <- function( theta, b, b.cat, freq.categories)
{
    eps <- 10^(-10)
    TP <- length(theta)
    I <- length(b)
    K <- length(b.cat)
    prob1 <- prob <- array( 1, dim=c(TP,I,K+1) )
    for (kk in 1:K){
        prob1[,,kk+1] <- stats::plogis( theta +
                            matrix( b, nrow=TP, ncol=I, byrow=TRUE) + b.cat[kk] )
        prob[,,kk] <- prob1[,,kk]-prob1[,,kk+1]
    }
    kk <- K+1
    prob[,,kk] <- prob1[,,kk]
    prob[ prob < eps ] <- eps
    # calculate log-likelihood
    ll <- freq.categories * log( prob )
    res <- list(ll=ll, prob=prob )
    return(res)
}

#####################################################################
# update theta parameter in logistic distribution
.update.theta.grm <- function( theta, b, b.cat, freq.categories,
        numdiff.parm, max.increment)
{
    h <- numdiff.parm
    # update theta parameter
    ll0 <- .calc.ll.grm( theta, b, b.cat, freq.categories)
    prob.grm <- ll0$prob
    ll0 <- ll0$ll
    ll1 <- .calc.ll.grm( theta+h, b, b.cat, freq.categories)$ll
    ll2 <- .calc.ll.grm( theta-h, b, b.cat, freq.categories)$ll
    ll0 <- rowSums(ll0)
    ll1 <- rowSums(ll1)
    ll2 <- rowSums(ll2)
    # derivative
    d1 <- ( ll1 - ll2  ) / ( 2 * h )    # negative sign?
    # second order derivative
    # f(x+h)+f(x-h)=2*f(x) + f''(x)*h^2
    d2 <- ( ll1 + ll2 - 2*ll0 ) / h^2
    # change in item difficulty
    d2[ abs(d2) < 10^(-10) ] <- 10^(-10)
    increment <- - d1 / d2
    increment <- ifelse( abs( increment) > abs(max.increment),
                                     sign(increment)*max.increment, increment )
    theta <- theta + increment
    res <- list(theta=theta, ll=sum(ll0), prob.grm=prob.grm )
    return(res)
}

#####################################################################
# update b parameter in logistic distribution
.update.b.grm <- function( theta, b, b.cat, freq.categories,
        numdiff.parm, max.increment)
{
    h <- numdiff.parm
    # update theta parameter
    ll0 <- .calc.ll.grm( theta, b, b.cat, freq.categories)
    ll0 <- ll0$ll
    ll1 <- .calc.ll.grm( theta, b+h, b.cat, freq.categories)$ll
    ll2 <- .calc.ll.grm( theta, b-h, b.cat, freq.categories)$ll
    ll0 <- rowSums(colSums(ll0))
    ll1 <- rowSums(colSums(ll1))
    ll2 <- rowSums(colSums(ll2))
    # derivative
    d1 <- ( ll1 - ll2  ) / ( 2 * h )    # negative sign?
    # second order derivative
    # f(x+h)+f(x-h)=2*f(x) + f''(x)*h^2
    d2 <- ( ll1 + ll2 - 2*ll0 ) / h^2
    # change in item difficulty
    d2[ abs(d2) < 10^(-10) ] <- 10^(-10)
    increment <- - d1 / d2
    increment <- ifelse( abs(increment) > abs(max.increment),
                                     sign(increment)*max.increment, increment )
    b <- b + increment
    #-- output
    res <- list(b=b, ll=sum(ll0) )
    return(res)
    }
##############################################################

#####################################################################
# update b parameter in logistic distribution
.update.bcat.grm <- function( theta, b, b.cat, freq.categories,
        numdiff.parm, max.increment)
{
    h <- numdiff.parm
    b.catN <- 0*b.cat
    for (kk in seq(1,length(b.cat))){
        e1 <- b.catN
        e1[kk] <- 1
        # update theta parameter
        ll0 <- .calc.ll.grm( theta, b, b.cat, freq.categories)
        ll0 <- ll0$ll
        ll1 <- .calc.ll.grm( theta, b, b.cat+h*e1, freq.categories)$ll
        ll2 <- .calc.ll.grm( theta, b, b.cat-h*e1, freq.categories)$ll
        ll0 <- sum(ll0)
        ll1 <- sum(ll1)
        ll2 <- sum(ll2)
        # derivative
        d1 <- ( ll1 - ll2  ) / ( 2 * h )    # negative sign?
        # second order derivative
        # f(x+h)+f(x-h)=2*f(x) + f''(x)*h^2
        d2 <- ( ll1 + ll2 - 2*ll0 ) / h^2
        # change in item difficulty
        d2[ abs(d2) < 10^(-10) ] <- 10^(-10)
        increment <- - d1 / d2
        increment <- ifelse( abs( increment) > abs(max.increment),
                                         sign(increment)*max.increment, increment )
        b.cat[kk] <- b.cat[kk] + increment
    }
    res <- list(b.cat=b.cat, ll=sum(ll0) )
    return(res)
}
##############################################################
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.