R/mcmc_3pno_testlet_draw_itempars.R

Defines functions mcmc_3pno_testlet_draw_itempars

## File Name: mcmc_3pno_testlet_draw_itempars.R
## File Version: 0.12


#---- draw item parameters a and b
mcmc_3pno_testlet_draw_itempars <- function( theta, Z, I, N, weights,
    gamma.testlet, testletgroups, param, TT, a.testletM)
{
    # define adjusted Z values
    gamma.testletM <- gamma.testlet[, testletgroups ]
    if (param==1){ Z <- Z - gamma.testletM }
    if (param==3){ Z <- Z - a.testletM*gamma.testletM }
    if (param==2){ # Z <- Z
        theta0 <- theta
        Z0 <- Z
    }
    # for parametrization 2, this function must be rewritten
    # because "the theta" is now item specific
    # loop over testlets tt=1,...,TT
    # maybe for TT+1 some adjustment has to be done
    #--- parametrization param=1
    if ( (param==1) | (param==3) ){
        #--------------
        # sampling without weights
        Xast <- as.matrix( cbind( theta, 1 ) )
        if ( is.null(weights) ){
            Sigma <- solve( crossprod(Xast) )
            # calculate mean
            mj <- Sigma %*% crossprod( Xast, Z )
            mj <- as.matrix( t(mj))
        }
        #--------------
        # sampling with weights
        if ( ! is.null( weights ) ){
            # compute elements of Xast
            Xast11 <- sum( theta^2 * weights )
            Xast12 <- - sum( theta * weights )
            Xast22 <- sum( weights )
            # compute inverse of Xast
            Xastdet <- Xast11*Xast22 - Xast12^2
            Xastinv11 <- Xast22 / Xastdet
            Xastinv22 <- Xast11 / Xastdet
            Xastinv12 <- - Xast12 / Xastdet
            Sigma <- matrix( c(Xastinv11, Xastinv12, Xastinv12, Xastinv22), 2,2 )
            mj <- Sigma %*% crossprod( Xast * weights, Z )
            mj <- as.matrix( t(mj))
        }
        #--------------
        # draw item parameters
        ipars <- sirt_rmvnorm( I, sigma=Sigma ) + mj
        a <- ipars[,1]
        b <- ipars[,2]
    }
    #--- parametrization param=2
    if (param==2){
        a <- rep(NA,I)
        b <- rep(NA,I)
        TTT <- TT
        if ( sum( testletgroups==TT+1 ) > 0 ){
                TTT <- TT + 1 }
        for (tt in 1:TTT){
            #tt <- 1
            theta <- theta0
            Z <- Z0
            ind.tt <- which( testletgroups==tt)
            Itt <- length(ind.tt)
            theta <- theta0 + gamma.testlet[, tt]
            Z <- Z[, ind.tt, drop=FALSE]
            #--------------
            # sampling without weights
            Xast <- as.matrix( cbind( theta, 1 ) )
            if ( is.null(weights) ){
                Sigma <- solve( crossprod(Xast) )
                # calculate mean
                mj <- Sigma %*% crossprod(Xast, Z )
                mj <- as.matrix( t(mj))
                                }
            #--------------
            # sampling with weights
            if ( ! is.null( weights ) ){
                # compute elements of Xast
                Xast11 <- sum( theta^2 * weights )
                Xast12 <- - sum( theta * weights )
                Xast22 <- sum( weights )
                # compute inverse of Xast
                Xastdet <- Xast11*Xast22 - Xast12^2
                Xastinv11 <- Xast22 / Xastdet
                Xastinv22 <- Xast11 / Xastdet
                Xastinv12 <- - Xast12 / Xastdet
                Sigma <- matrix( c(Xastinv11, Xastinv12, Xastinv12, Xastinv22), 2,2 )
                # compute t(Xast) %*% Z (weighted)
                mj <- Sigma %*% crossprod( Xast * weights, Z )
                mj <- as.matrix( t(mj))
                    }
            #--------------
            # draw item parameters
            ipars <- sirt_rmvnorm( Itt, sigma=Sigma ) + mj
            a[ind.tt] <- ipars[,1]
            b[ind.tt] <- ipars[,2]
        }            # end testlet tt
    } # end param=2
    #-- output
    res <- list( "a"=a, "b"=b)
    return(res)
}


.draw.itempars.3pno.testlet <- mcmc_3pno_testlet_draw_itempars
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.