R/smirt_alg_noncomp.R

Defines functions .smirt.est.d.noncomp .smirt.est.c.noncomp .smirt.est.a.noncomp .smirt.est.b.noncomp problong2probarray .smirt.est.covariance

## File Name: smirt_alg_noncomp.R
## File Version: 2.421

############################################
# probability in noncompensatory model
calcprob.noncomp <- function (a,b,Q,thetak,cc,dd)
{
    res <- SMIRT_CALCPROB_NONCOMP( a,b,Q,thetak,cc,dd)
    return(res)
}

#--- calculation of posterior distribution
calcpost <- function (dat2, dat2resp, probs, dat2ind, pik, K)
{
    res0 <- SMIRT_CALCPOST( dat2, dat2resp, probs, dat2ind, PIK=pik, K )
    res <- list(fyiqk=res0$fyiqk, f.qk.yi=res0$fqkyi, pi.k=res0$pik,
                    n.ik=res0$nik, N.ik=res0$NIK )
    return(res)
}



######################################
# estimation of covariance
.smirt.est.covariance <- function( f.qk.yi, Sigma, theta.k, N,
        mu.fixed, variance.fixed, D, est.corr, irtmodel ){
        Sigma.cov <- Sigma
        delta.theta <- 1
        hwt <- f.qk.yi
#        if (qmcnodes){
#            hwt <- hwt / nrow(theta.k)
#            hwt <- hwt / rowSums( hwt )
#                }
        thetabar <- hwt%*%theta.k
        # calculation of mu
        mu <- colSums( thetabar ) / N
        if ( ! is.null(mu.fixed ) ){
              if (is.matrix(mu.fixed) ){
                mu0 <- mu
                mu[ mu.fixed[,1] ] <- mu.fixed[,2]
                                    }
                            }
        # calculation of the covariance matrix
        theta.k.adj <- theta.k - matrix( mu, nrow=nrow(theta.k),
                                    ncol=ncol(theta.k), byrow=TRUE)
        for (dd1 in 1:D){
            for (dd2 in dd1:D){
                tk <- theta.k.adj[,dd1]*theta.k.adj[,dd2]
                h1 <- ( hwt %*% tk ) * delta.theta
                Sigma.cov[dd1,dd2] <- sum( h1 ) / N
                if (dd1 < dd2 ){ Sigma.cov[dd2,dd1] <- Sigma.cov[dd1,dd2] }
                                    }
                                }
        if ( est.corr ){ Sigma.cov <- stats::cov2cor(Sigma.cov ) }
        if ( ! is.null(variance.fixed ) ){
                Sigma.cov[ variance.fixed[,1:2,drop=FALSE] ] <- variance.fixed[,3]
                Sigma.cov[ variance.fixed[,c(2,1),drop=FALSE] ] <- variance.fixed[,3]
#
                                    }
        diag(Sigma.cov) <- diag(Sigma.cov) + 10^(-10)
        pi.k <- sirt_dmvnorm_discrete( theta.k, mean=mu, sigma=Sigma.cov, as_matrix=TRUE)
        res <- list("mu"=mu, "Sigma"=Sigma.cov, "pi.k"=pi.k )
        return(res)
                    }
#################################################################
# convert matrix with probabilities
problong2probarray <- function( probres, I, TP ){
        probs <- array(0, dim=c(I,2,TP))
        probs[,1,] <- 1 - probres
        probs[,2,] <- probres
        return(probs)
        }

###########################################
# estimation of b
.smirt.est.b.noncomp <- function(   b, a, c, d, Qmatrix, est.b, theta.k,
        n.ik, I, K, TP, D, numdiff.parm=.001, max.increment=1,
        msteps,  mstepconv, increment.factor){
    h <- numdiff.parm
    diffindex <- est.b        # zeros are allowed!
    cat("  M steps b parameter   |")
    it <- 0
    conv1 <- 1000
    Q2 <- Q1 <- 0*Qmatrix
    Q <- Qmatrix
    se.b <- b
    b00 <- b
    while( ( it < msteps ) & ( conv1 > mstepconv ) ){
        b0 <- b
        for (dd in 1:D){
#                dd <- 2
            Q2 <- Q1
            Q2[,dd] <- 1 * ( Qmatrix[,dd] !=0 )

            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c, d )
            pjk <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a, b + h*Q2, Q, thetak=theta.k, c, d )
            pjk1 <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a, b - h*Q2, Q, thetak=theta.k, c, d )
            pjk2 <- problong2probarray( probres, I, TP )

            # numerical differentiation
            res <- .rm.numdiff.index( pjk, pjk1, pjk2, n.ik, diffindex[,dd],
                    max.increment=max.increment, numdiff.parm )
            ind <- match( diffindex[,dd], sort(unique( diffindex[,dd] )) )
            b[,dd] <- b[,dd] + (res$increment)[ind]
            se.b[,dd] <- (sqrt(  1 / abs(res$d2) ))[ind]
                        }   # end dd
        conv1 <- max( abs( b - b0 ) )
        it <- it+1
        cat("-") # ; flush.console()
            }
    cat(" ", it, "Step(s) \n")    #; flush.console()
    if ( increment.factor > 1){
        b <- .adj.maxincrement.parameter( oldparm=b00, newparm=b,
                    max.increment=max.increment )
                        }
    res <- list("b"=b, "se.b"=se.b,
            "ll"=sum(res$ll0) )
    return(res)
            }

###########################################
# estimation of a
.smirt.est.a.noncomp <- function(   b, a, c, d, Qmatrix, est.a, theta.k,
        n.ik, I, K, TP, D, numdiff.parm=.001, max.a.increment,
        msteps,  mstepconv, increment.factor){
    h <- numdiff.parm
    diffindex <- est.a        # zeros are allowed!
    cat("  M steps a parameter   |")
    it <- 0 ;    conv1 <- 1000
    Q2 <- Q1 <- 0*Qmatrix
    Q <- Qmatrix
    se.a <- a
    a00 <- a
    while( ( it < msteps ) & ( conv1 > mstepconv ) ){
        a0 <- a
        for (dd in 1:D){
#                dd <- 2
            Q2 <- Q1
            Q2[,dd] <- 1 * ( Qmatrix[,dd] !=0 )

            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c, d )
            pjk <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a + h*Q2, b, Q, thetak=theta.k, c, d )
            pjk1 <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a - h*Q2, b, Q, thetak=theta.k, c, d )
            pjk2 <- problong2probarray( probres, I, TP )

            # numerical differentiation
            res <- .rm.numdiff.index( pjk, pjk1, pjk2, n.ik, diffindex[,dd],
                    max.increment=max.a.increment[,dd], numdiff.parm )
            ind <- match( diffindex[,dd], sort(unique( diffindex[,dd] )) )
            a[,dd] <- a[,dd] + (res$increment)[ind]
#            max.a.increment[,dd] <- abs( (res$increment)[ind] )
            se.a[,dd] <- (sqrt(  1 / abs(res$d2) ))[ind]
                        }   # end dd
        conv1 <- max( abs( a - a0 ) )
        it <- it+1
        cat("-") # ; flush.console()
            }
    cat(" ", it, "Step(s) \n")    #; flush.console()
    #****
    # post-processing of a parameters
    if ( increment.factor > 1){
        a <- .adj.maxincrement.parameter( oldparm=a00, newparm=a,
                    max.increment=max.a.increment )
                        }
    res <- list("a"=a, "se.a"=se.a, "ll"=sum(res$ll0) )
    return(res)
            }



###########################################
# estimation of c
.smirt.est.c.noncomp <- function(   b, a, c, d, Qmatrix, est.c, theta.k,
        n.ik, I, K, TP, D, numdiff.parm=.001, max.increment=max.increment,
        msteps,  mstepconv, increment.factor){
    h <- numdiff.parm
    diffindex <- est.c        # zeros are allowed!
    Q1 <- rep(1,I)
    Q1[ est.c==0 ] <- 0
    Q <- Qmatrix
    c00 <- c
    cat("  M steps c parameter   |")
    it <- 0 ;    conv1 <- 1000
    while( ( it < msteps ) & ( conv1 > mstepconv ) ){
        c0 <- c
            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c, d )
            pjk <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c+h*Q1, d )
            pjk1 <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c-h*Q1, d )
            pjk2 <- problong2probarray( probres, I, TP )

            # numerical differentiation
            res <- .rm.numdiff.index( pjk, pjk1, pjk2, n.ik, diffindex,
                    max.increment=max.increment, numdiff.parm )
            ind <- match( diffindex, sort(unique( diffindex ))    )
            incr <- res$increment
            incr[ is.na(incr ) ] <- 0
            c <- c + incr[ind]
            c[ c< 0 ] <- .001
#            max.a.increment[,dd] <- abs( (res$increment)[ind] )
            se.c <- (sqrt(  1 / abs(res$d2) ))[ind]
        conv1 <- max( abs( c - c0 ) )
        it <- it+1
        cat("-") # ; flush.console()
            }
    cat(" ", it, "Step(s) \n")    #; flush.console()
    if ( increment.factor > 1){
        c <- .adj.maxincrement.parameter( oldparm=c00, newparm=c,
                    max.increment=max.increment )
                        }
    res <- list("c"=c, "se.c"=se.c,
            "ll"=sum(res$ll0) )
    return(res)
            }


###########################################
# estimation of c
.smirt.est.d.noncomp <- function(   b, a, c, d, Qmatrix, est.d, theta.k,
        n.ik, I, K, TP, D, numdiff.parm=.001, max.increment=max.increment,
        msteps,  mstepconv, increment.factor){
    h <- numdiff.parm
    diffindex <- est.d        # zeros are allowed!
    Q1 <- rep(1,I)
    Q1[ est.d==0 ] <- 0
    Q <- Qmatrix
    d00 <- d
    cat("  M steps d parameter   |")
    it <- 0 ;    conv1 <- 1000
    while( ( it < msteps ) & ( conv1 > mstepconv ) ){
        d0 <- d
            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c, d )
            pjk <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c, d +h*Q1)
            pjk1 <- problong2probarray( probres, I, TP )

            probres <- calcprob.noncomp( a, b, Q, thetak=theta.k, c, d-h*Q1 )
            pjk2 <- problong2probarray( probres, I, TP )

            # numerical differentiation
            res <- .rm.numdiff.index( pjk, pjk1, pjk2, n.ik, diffindex,
                    max.increment=max.increment, numdiff.parm )
            ind <- match( diffindex, sort(unique( diffindex ))        )
            incr <- res$increment
            incr[ is.na(incr ) ] <- 0
            d <- d + incr[ind]
            d[ d>1 ] <- .999
#            max.a.increment[,dd] <- abs( (res$increment)[ind] )
            se.d <- (sqrt(  1 / abs(res$d2) ))[ind]
        conv1 <- max( abs( d - d0 ) )
        it <- it+1
        cat("-") # ; flush.console()
            }
    cat(" ", it, "Step(s) \n")    #; flush.console()
    if ( increment.factor > 1){
        d <- .adj.maxincrement.parameter( oldparm=d00, newparm=d,
                    max.increment=max.increment )
                        }
    res <- list("d"=d, "se.d"=se.d, "ll"=sum(res$ll0) )
    return(res)
            }
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.