################################
#: estimator
################################
# continuous
.gcc <- function(n,
X,
Y,
Acol,
delta,
qfun,
gfun=NULL,
qfit,
gfits=NULL,
estimand,
wt,
isbin=FALSE,
...){
#cat(paste0("column ", names(X)[Acol], ": continuous\n"))
Xb <- X
Xb[,Acol] <- X[,Acol]+delta
p2 <- qfun(Xb,Acol,qfit=qfit,...)
(p2 - Y*(estimand != "mean"))*wt
}
# binary
.gcb <- function(n,
X,
Y,
Acol,
delta,
qfun,
gfun=NULL,
qfit,
gfits=NULL,
estimand,
wt,
isbin=FALSE,
...){
#cat(paste0("column ", names(X)[Acol], ": binary\n"))
X0 <- .shift(X,Acol, -X[,Acol])
X1 <- .shift(X,Acol, (1-X[,Acol]))
p2 <- qfun(qfit=qfit,...)
p3 <- delta*(qfun(X1,Acol,qfit=qfit,...) - qfun(X0,Acol,qfit=qfit,...))
(p2 + p3 - Y*(estimand != "mean"))*wt
}
.EstGcomp <- function(phi){
#summary(fit <- lm(dphi~1))
est = mean(phi)
D <- phi-est
se = sqrt(mean(D^2)/length(D))
c(est=est, se = se, z=est/se)
}
.EstimatorGcomp <- function(n,
X,
Y,
whichcols=seq_len(ncol(X)),
delta,
qfun,
gfun,
qfit,
gfits,
estimand,
bounded=FALSE,
wt=rep(1,n),
isbin=FALSE,
...){
if(length(whichcols>1)) {
isbin_vec <- apply(X[,whichcols, drop=FALSE], 2, function(x) length(unique(x))==2)
} else isbin_vec = length(unique(X[,whichcols]))==2
resmat <- matrix(NA, nrow=length(isbin_vec), ncol=3)
for(Acol in seq_len(length(isbin_vec))){
if(isbin_vec[Acol]){
phi <- .gcb(n=n,X=X,Y=Y,Acol=Acol,delta=delta,qfun=qfun,gfun=NULL,qfit=qfit,gfits=NULL,estimand=estimand, wt=wt, isbin=isbin, ...)
} else{
phi <- .gcc(n=n,X=X,Y=Y,Acol=Acol,delta=delta,qfun=qfun,gfun=NULL,qfit=qfit,gfits=NULL,estimand=estimand, wt=wt, isbin=isbin, ...)
}
tm <- .EstGcomp(phi)
resmat[Acol,] <- tm
}
colnames(resmat) <- names(tm)
rownames(resmat) <- names(X[,whichcols,drop=FALSE])
resmat <- data.frame(resmat)
resmat$p <- pnorm(-abs(resmat$z))*2
resmat
}
################################
# expert wrappers
################################
.trained_gcomp <- function(
obj,
X,
Y,
delta,
qfun,
gfun,
estimand,
bounded,
updatetype # placeholder here
){
fittable <- .EstimatorGcomp(n=obj$n,X=X,Y=Y,whichcols=obj$whichcols,delta,qfun=.qfunction,gfun=NULL,qfit=obj$sl.qfit,gfits=NULL, estimand, bounded,wt=obj$weights, isbin=obj$isbin)
res <- list(
res = fittable,
qfit = obj$sl.qfit,
gfits = NULL,
binomial = obj$isbin,
type = "GCOMP",
weights=obj$weights
)
class(res) <- c("vibr_fit", class(res))
res
}
#' @export
.varimp_gcomp <- function(X,
Y,
V=NULL,
whichcols=seq_len(ncol(X)),
delta=0.1,
Y_learners=NULL,
Xdensity_learners=NULL,
Xbinary_learners=NULL,
verbose=TRUE,
estimand,
bounded=FALSE,
isbin=NULL,
...){
obj = .prelims(X=X, Y=Y, V=V, whichcols=whichcols, delta, Y_learners, Xbinary_learners=NULL, Xdensity_learners=NULL, verbose=verbose, isbin=isbin, ...)
#res = .trained_gcomp(obj,X,Y,delta,qfun,gfun,estimand,bounded,updatetype=NULL)
res = .trained_gcomp(obj,X,Y,delta,qfun=.qfunction,gfun=.gfunction,estimand,bounded,updatetype=NULL)
res
}
#' @importFrom future future value
#' @export
.varimp_gcomp_boot <- function(X,
Y,
V=NULL,
whichcols=seq_len(ncol(X)),
delta=0.1,
Y_learners=NULL,
Xdensity_learners=NULL,
Xbinary_learners=NULL,
verbose=TRUE,
estimand="diff",
bounded=FALSE,
isbin=NULL,
B=100,
showProgress=TRUE,
...){
if(is.null(isbin)) isbin <- as.logical((length(unique(Y))==2))
est <- .varimp_gcomp(X=X,Y=Y,V=V,whichcols=whichcols,delta,Y_learners,Xdensity_learners,Xbinary_learners,verbose,estimand,bounded,isbin=isbin,...)
rn <- rownames(est$res)
n = length(Y)
ee <- new.env()
for(b in 1:B){
#ridx <- sample(seq_len(n), n, replace=TRUE)
ridx <- .bootsample(n)
ee[[paste0("iter",b)]] <- future::future( {
if(showProgress) cat(".")
Xi = X[ridx,,drop=FALSE]
Yi = Y[ridx]
Vi = V[ridx,,drop=FALSE]
obj = .prelims(X=Xi, Y=Yi, V=Vi, whichcols=whichcols, delta, Y_learners, Xbinary_learners, Xdensity_learners, verbose=verbose,isbin=isbin, ...)
fittable <- .EstimatorGcomp(n=obj$n,X=Xi,Y=Yi,whichcols=obj$whichcols,delta,qfun=.qfunction,gfun=.gfunction,qfit=obj$sl.qfit,gfits=obj$sl.gfits, estimand,bounded,wt=obj$weights, isbin=obj$isbin)
fittable$est
}, seed=TRUE, lazy=TRUE)
}
bootests = do.call(rbind, as.list(future::value(ee)))
if(showProgress) cat("\n")
colnames(bootests) <- rn
if(verbose) cat("\n")
res <- list(
est = est,
boots = bootests,
binomial = isbin,
type = "GCOMP"
)
class(res) <- c("vibr_bootfit", class(res))
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.