#' Predict differential gene expression from differential methylation profiles
#'
#' \code{bpr_diff_predict_wrap} is a function that wraps all the necessary
#' subroutines for performing prediction of differential gene expression levels.
#' Initially, it optimizes the parameters of the basis functions so as to learn
#' the methylation profiles for the control and the treatment samples Then, the
#' two learned methylation profiles are concatenated to keep all coefficients
#' for both profiles. Then the learned parameters / coefficients of the basis
#' functions are given as input features for performing regression in order to
#' predict the corresponding differential (log2 fold-change) gene expression
#' levels.
#'
#' @param formula An object of class \code{\link[stats]{formula}}, e.g. see
#' \code{\link[stats]{lm}} function. If NULL, the simple linear regression
#' model is used.
#' @param x The binomial distributed observations. A list containing two lists
#' for control and treatment samples. Each list has elements of length N,
#' where each element is an L x 3 matrix of observations, where 1st column
#' contains the locations. The 2nd and 3rd columns contain the total reads and
#' number of successes at the corresponding locations, repsectively. See
#' \code{\link{process_haib_caltech_wrap}} on a possible way to get this data
#' structure.
#' @param y Corresponding gene expression data. A list containing two vectors
#' for control and treatment samples.
#' @param model_name A string denoting the regression model. Currently,
#' available models are: \code{"svm"}, \code{"randomForest"}, \code{"rlm"},
#' \code{"mars"} and \code{"lm"}.
#' @param w Optional vector of initial parameter / coefficient values.
#' @param basis Optional basis function object, default is an 'rbf' object, see
#' \code{\link{create_rbf_object}}.
#' @param train_ind Optional vector containing the indices for the train set.
#' @param train_perc Optional parameter for defining the percentage of the
#' dataset to be used for training set, the remaining will be the test set.
#' @param is_summary Logical, print the summary statistics.
#' @inheritParams bpr_optimize
#'
#' @return A 'bpr_diff_predict' object which, in addition to the input
#' parameters, consists of the following variables: \itemize{ \item{
#' \code{W_opt}: An Nx(2M+2) matrix with the optimized parameter values. Each
#' row of the matrix corresponds to the concatenated coefficients of the
#' methylation profiles from both samples. The columns are of the same length
#' as the concatenated parameter vector [w_contr, w_treat] (i.e. number of
#' basis functions). } \item{ \code{Mus}: A list containing two matrices of
#' size N x M with the RBF centers for each sample, if basis object is
#' \code{\link{create_rbf_object}}, otherwise NULL.} \item{train}: The
#' training data. \item{test}: The test data. \item \code{gex_model}: The
#' fitted regression model. \item \code{train_pred} The predicted values for
#' the training data. \item \code{test_pred} The predicted values for the test
#' data. \item \code{train_errors}: The training error metrics. \item
#' \code{test_errors}: The test error metrics.}
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @seealso \code{\link{bpr_optimize}}, \code{\link{create_basis}},
#' \code{\link{eval_functions}}, \code{\link{train_model_gex}},
#' \code{\link{predict_model_gex}}
#'
#' @export
bpr_diff_predict_wrap <- function(formula = NULL, x, y, model_name = "svm",
w = NULL, basis = NULL, train_ind = NULL,
train_perc = 0.7, fit_feature = "RMSE",
cpg_dens_feat = TRUE, opt_method = "CG",
opt_itnmax = 100, is_parallel = TRUE,
no_cores = NULL, is_summary = TRUE){
# Check that x is a list object
assertthat::assert_that(is.list(x))
# Learn methylation profiles for control samples
message("Learning control methylation profiles ...\n")
out_contr_opt <- bpr_optim(x = x$control,
w = w,
basis = basis,
fit_feature = fit_feature,
cpg_dens_feat = cpg_dens_feat,
opt_method = opt_method,
opt_itnmax = opt_itnmax,
is_parallel = is_parallel,
no_cores = no_cores)
# Learn methylation profiles for treatment samples
message("Learning treatment methylation profiles ...\n")
out_treat_opt <- bpr_optim(x = x$treatment,
w = w,
basis = basis,
fit_feature = fit_feature,
cpg_dens_feat = cpg_dens_feat,
opt_method = opt_method,
opt_itnmax = opt_itnmax,
is_parallel = is_parallel,
no_cores = no_cores)
# Compute fold change gene expression levels
y_diff <- log2(y$treatment / y$control)
# Concatenate coefficients from both samples
W_diff <- cbind(out_contr_opt$W_opt, out_treat_opt$W_opt)
colnames(W_diff) <- NULL
# Create training and test sets
message("Partitioning to test and train data ...\n")
dataset <- .partition_data(x = W_diff,
y = y_diff,
train_ind = train_ind,
train_perc = train_perc)
# Train regression model from methylation profiles
message("Training linear regression model ...\n")
train_model <- train_model_gex(formula = formula,
model_name = model_name,
train = dataset$train,
is_summary = is_summary)
# Predict gene expression from methylation profiles
message("Making predictions ...\n")
predictions <- predict_model_gex(model = train_model$gex_model,
test = dataset$test,
is_summary = is_summary)
message("Done!\n\n")
# Create 'bpr_predict' object
obj <- structure(list(formula = formula,
model_name = model_name,
basis = out_treat_opt$basis,
train_ind = dataset$train_ind,
train_perc = train_perc,
fit_feature = fit_feature,
cpg_dens_feat = cpg_dens_feat,
opt_method = opt_method,
opt_itnmax = opt_itnmax,
W_opt_conc = W_diff,
W_opt_contr = out_contr_opt$W_opt,
W_opt_treat = out_treat_opt$W_opt,
Mus = list(control = out_contr_opt$Mus,
treatment = out_treat_opt$Mus),
train = dataset$train,
test = dataset$test,
gex_model = train_model$gex_model,
train_pred = train_model$train_pred,
test_pred = predictions$test_pred,
train_errors = train_model$train_errors,
test_errors = predictions$test_errors),
class = "bpr_diff_predict")
return(obj)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.