# Plotting supplementary figure for pan-cancer hits
library(ggplot2)
library(dplyr)
library(cowplot)
load("~/Downloads/Slidr_Results_new/PanCan8pc/causal_res.Rdata")
# Confounders plot for the top causally inferred hits
confounders <- setdiff(sig_causal_hits$sl_partner_gene, c("PRMT5","MAT2A","RPL22L1", "CTNNB1"))
bp_summary_df <- hits_pancan %>% filter(sl_partner_gene %in% confounders)
# removing long names for better aesthetics
bp_summary_df$sl_partner_gene <- unlist(lapply(bp_summary_df$sl_partner_gene,
function(x){strsplit(x, ",")[[1]][1]}))
bp_summary_df <- bp_summary_df %>% arrange(sl_partner_gene)
a <- ggplot(bp_summary_df, aes(x= factor(driver_gene, levels = unique(driver_gene)), y=sl_partner_gene, size = -log10(mut_pvalue))) +
geom_point(fill = "#055C95",color="#055C95", alpha=0.45) +
scale_size_continuous(range=c(2, 10)) +
theme_bw() +
xlab("Driver genes") +
ylab("SL partner genes") +
labs(size = "-log10(p-value)")+
theme(panel.grid.major = element_line(size = 0.1),
panel.grid.minor = element_blank(),
axis.ticks = element_line(size=0.5,color="#525252"),
axis.line = element_line(colour="#525252"),
axis.text.y=element_text(angle=0, vjust=0.5, hjust=1,size=11,colour="#525252"),
axis.text.x=element_text(angle=90, vjust=0.5, hjust=1,size=11,colour="#525252"),
axis.title.x=element_text(angle=0,size=13,face="bold",vjust=0,colour="#525252"),
axis.title.y=element_text(angle=90, size=13,face="bold",vjust=0,colour="#525252"),
strip.text.x = element_text(size = 9, colour = "#525252", face = "bold"),
strip.background = element_blank(),
legend.position = "right",
legend.title = element_text(vjust = 0.5, size=11,colour="#525252"),
legend.text = element_text(size=10.5,colour="#525252"),
legend.key.size = unit(0.25, "cm"))
row_1 <- plot_grid(a, NULL,labels = c("A", "B"), rel_widths = c(0.7,0.3), nrow = 1, label_size = 13)
row_2 <- plot_grid(NULL, labels = c("C"), nrow = 1, label_size = 13)
fin_plot <- plot_grid(row_1, row_2,
nrow = 2,
ncol = 1,
rel_heights = c(1,0.4),
# align = "v",
axis = 'l')
ggsave(fin_plot, filename = paste0("/Volumes/beerenwinkel/ssumana/Documents/ETH/CRISPR/SLIDR/Figures/finalPlot_supp1",Sys.Date(),".pdf"),
width = 14, height = 11)
# Hits for the Venn diagram in liver comparing FDR, SLIdR, and Bonferroni
rm(list = ls())
# Loading cancer specific hits
load("~/Downloads/Slidr_Results_new/ContCN/ProcessedData.Rdata")
path_results <- "~/Downloads/Slidr_Results_new/"
# Testing all pairs
# all_hits_liver <- slidr::identifySLHits(canc_data = all_data$liver, path_results = path_results, WT_pval_thresh = 0, qval_thresh = Inf)
all_hits_liver <- read.delim("~/Downloads/Slidr_Results_new/ContCN/All_SL_hits_liver.txt", stringsAsFactors = FALSE)
all_hits_liver$fdr <- p.adjust(all_hits_liver$mut_pvalue, method = "fdr")
all_hits_liver$bon <- p.adjust(all_hits_liver$mut_pvalue, method = "bonferroni")
fdr_hits_liver <- all_hits_liver %>%
dplyr::filter(WT_pvalue >= 0.1 & fdr <= 0.1 & driver_gene != sl_partner_gene)
bon_hits_liver <- all_hits_liver %>%
dplyr::filter(WT_pvalue >= 0.1 & bon <= 0.1 & driver_gene != sl_partner_gene)
# Hits from our method
sub_hits_liver <- read.delim("~/Downloads/Slidr_Results_new/ContCN/Hit_List/SL_hits_liver.txt", stringsAsFactors = FALSE)
sub_hits_liver <- sub_hits_liver %>%
dplyr::filter(WT_pvalue >= 0.1 & driver_gene != sl_partner_gene)
# Common hits between different methods
fdr_ours <- intersect(paste0(fdr_hits_liver$driver_gene, fdr_hits_liver$sl_partner_gene),
paste0(sub_hits_liver$driver_gene, sub_hits_liver$sl_partner_gene))
bon_ours <- intersect(paste0(bon_hits_liver$driver_gene, bon_hits_liver$sl_partner_gene),
paste0(sub_hits_liver$driver_gene, sub_hits_liver$sl_partner_gene))
bon_fdr <- intersect(paste0(bon_hits_liver$driver_gene, bon_hits_liver$sl_partner_gene),
paste0(fdr_hits_liver$driver_gene, fdr_hits_liver$sl_partner_gene))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.