library(monocle)
library(HSMMSingleCell)
context("reduceDimension is functioning properly")
pd <- new("AnnotatedDataFrame", data = HSMM_sample_sheet)
fd <- new("AnnotatedDataFrame", data = HSMM_gene_annotation)
# First create a CellDataSet from the relative expression levels
HSMM <- newCellDataSet(as.matrix(HSMM_expr_matrix),
phenoData = pd,
featureData = fd,
lowerDetectionLimit=0.1,
expressionFamily=tobit(Lower=0.1))
# Next, use it to estimate RNA counts
rpc_matrix <- relative2abs(HSMM, method = "num_genes")
# Now, make a new CellDataSet using the RNA counts
HSMM <- newCellDataSet(as(as.matrix(rpc_matrix), "sparseMatrix"),
phenoData = pd,
featureData = fd,
lowerDetectionLimit=0.5,
expressionFamily=negbinomial.size())
HSMM <- estimateSizeFactors(HSMM)
HSMM <- estimateDispersions(HSMM)
HSMM <- detectGenes(HSMM, min_expr = 0.1)
print(head(fData(HSMM)))
expressed_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= 10))
pData(HSMM)$Total_mRNAs <- Matrix::colSums(exprs(HSMM))
HSMM <- HSMM[,pData(HSMM)$Total_mRNAs < 1e6]
HSMM <- detectGenes(HSMM, min_expr = 0.1)
L <- log(exprs(HSMM[expressed_genes,]))
melted_dens_df <- melt(Matrix::t(scale(Matrix::t(L))))
MYF5_id <- row.names(subset(fData(HSMM), gene_short_name == "MYF5"))
ANPEP_id <- row.names(subset(fData(HSMM), gene_short_name == "ANPEP"))
# HSMM <- classifyCells(HSMM, cth, 0.1)
disp_table <- dispersionTable(HSMM)
unsup_clustering_genes <- subset(disp_table, mean_expression >= 0.1)
HSMM <- setOrderingFilter(HSMM, unsup_clustering_genes$gene_id)
test_that("reduceDimension works properly", expect_error(HSMM <- reduceDimension(HSMM, max_components=2, num_dim = 6,
reduction_method = 'tSNE', verbose = T), NA))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.