library(plotly) library(DT) library(dplyr) library(utils) knitr::opts_chunk$set(echo = FALSE) knitr::knit_hooks$set(wrap = function(before, options, envir){ if (before){ paste0('<', options$wrap, ' align="center">') } else { paste0('</', options$wrap, '>') } })
metadata <- readRDS(params$metadata_path)
A total of r length(metadata$metadata)
metadata variables were imported from the sample sheet for this sample: -
classes <- as.character(lapply(metadata$metadata, class)) metadata_table <- data.frame( metadata = names(metadata$metadata), class = paste0("<i>", classes, "</i>"), values = t(metadata$metadata)[,1] ) datatable(metadata_table, rownames = FALSE, options = list(pageLength = 5, scrollX=F, columnDefs = list(list(className = 'dt-left', targets = "_all"))), escape = FALSE )
r if(metadata$scflow_steps$emptydrops_annotated != 1){"EmptyDrops was not run on this dataset."}
knitr::opts_chunk$set(echo = FALSE) metadata$qc_plots$count_depth_distribution
r if(metadata$qc_params$max_library_size_method == "adaptive"){sprintf("The maximum number of counts per cell threshold was determined adaptively for this sample as >=%s median average deviations (MADs), or %s total counts per cell.", metadata$qc_params$nmads, metadata$qc_params$max_library_size)}
r if(metadata$qc_params$max_features_method == "adaptive"){sprintf("The maximum number of features per cell threshold was determined adaptively for this sample as >=%s median average deviations (MADs), or %s total features per cell.", metadata$qc_params$nmads, metadata$qc_params$max_features)}
knitr::opts_chunk$set(echo = FALSE) metadata$qc_plots$count_depth_histogram #ggplotly(metadata$qc_plots$count_depth_histogram)
knitr::opts_chunk$set(echo = FALSE) metadata$qc_plots$number_genes_vs_count_depth
r if(metadata$qc_params$max_mito_method == "adaptive"){sprintf("The maximum fraction of mitochondrial counts per cell threshold was determined adaptively for this sample as >=%s median average deviations (MADs), or %s total counts per cell.", metadata$qc_params$nmads, metadata$qc_params$max_mito)}
knitr::opts_chunk$set(echo = FALSE) #ggplotly(metadata$qc_plots$mito_fraction_histogram) metadata$qc_plots$mito_fraction_histogram
r if(metadata$scflow_steps$singlets_annotated != 1){"No doublet/multiplet identification algorithm was run on this dataset."}
datatable(t(metadata$qc_summary), colnames = "")
{r, results='asis', eval = (!is.null(metadata$citations))}
knitr::opts_chunk$set(echo = FALSE)
cat(apply(metadata$citations, 1, .print_citation_html))
scFlow vr utils::packageVersion("scFlow")
-- r Sys.time()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.