View source: R/run_doubletfinder.R
run_doubletfinder | R Documentation |
Runs the doubletfinder algorithm on the SingleCellExperiment. Returns a SingleCellExperiment annotated with is_singlet and tSNE coordinates.
run_doubletfinder(
sce,
pK = NULL,
pca_dims = 10,
var_features = 2000,
vars_to_regress_out = "nCount_RNA",
doublet_rate = 0,
dpk = 8,
num_cores = max(1, future::availableCores() - 2)
)
sce |
a SingleCellExperiment object |
pK |
a pK value to use in place of a parameter sweep |
pca_dims |
the number of principal components to use |
var_features |
the top n variable features to use |
vars_to_regress_out |
the variables to regress out |
doublet_rate |
either a fixed doublet rate (e.g. 0.075) or 0 to |
dpk |
doublets per thousand cells increment if doublet_rate is 0. |
num.cores |
the number of CPU cores to use |
Remember to cite: - DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. McGinnis CS, Murrow LM, Gartner ZJ. Cell Syst. 2019 Apr 24;8(4):329-337.e4. doi: https://doi.org/10.1016/j.cels.2019.03.003.
sce a SingleCellExperiment object annotated for singlets
Other annotation functions:
.preprocess_seurat_object()
,
annotate_celltype_metrics()
,
annotate_integrated_sce()
,
annotate_merged_sce()
,
annotate_sce()
,
annotate_sce_cells()
,
annotate_sce_genes()
,
filter_sce()
,
find_cells()
,
find_singlets()
,
generate_sce()
,
map_ensembl_gene_id()
,
merge_sce()
,
read_metadata()
,
report_celltype_metrics()
,
report_celltype_model()
,
report_merged_sce()
,
report_qc_sce()
,
sce_to_seu()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.