# entity objects used in struct, to reduce duplicity
ents=list()
ents$alpha=entity(name='Confidence level',
ontology='STATO:0000053',
value=0.05,
type='numeric',
description='The p-value cutoff for determining significance.'
)
ents$mtc=enum(name='Multiple test correction method',
value='fdr',
type='character',
description=c(
'bonferroni' = 'Bonferroni correction in which the p-values are multiplied by the number of comparisons.',
'fdr' = 'Benjamini and Hochberg False Discovery Rate correction.',
'none' = 'No correction.'
),
allowed=c("bonferroni","fdr", "none"),
max_length = 1,
ontology='OBI:0200089'
)
ents$formula=entity(name='Formula',
value=y~x,
type='formula',
description='A symbolic description of the model to be fitted.'
)
ents$f_statistic=entity(name='F-statistic',
ontology='STATO:0000176',
type='data.frame',
description=paste0('The value of the calculated statistic.'),
value=data.frame()
)
ents$p_value=entity(name='p value',
ontology='STATO:0000175',
type='data.frame',
description=paste0('The probability of observing the calculated statistic ',
'if the null hypothesis is true.'),
value=data.frame()
)
ents$significant=entity(name='Significant features',
#ontology='STATO:0000069',
type='data.frame',
description=paste0('True/False indicating whether the p-value computed ',
'for each variable is less than the threshold.'),
value=data.frame()
)
ents$blank_label=entity(name = 'Blank label',
description = 'The label used to identify blank samples.',
value = 'Blank',
type='character')
ents$qc_label=entity(name = 'QC label',
description = paste0('The label used to identify QC samples. If set to NULL ',
'then the median of the samples is used.'),
value = 'QC',
type=c('character','NULL'))
ents$filtered=entity(name = 'Filtered DatasetExperiment',
description = 'A DatasetExperiment object containing the filtered data.',
type='DatasetExperiment',
value=DatasetExperiment()
)
ents$flags=entity(name = 'Flags',
description = 'A flag indicating whether the feature was rejected or not.',
type='data.frame',
value=data.frame()
)
ents$factor_name=entity(name='Factor name',
description='The name of a sample-meta column to use.',
type='character',
value='V1')
ents$factor_names=entity(name='Factor name(s)',
description='The name of sample meta column(s) to use.',
type='character',
value='V1')
ents$by_sample=entity(name='Plot by sample or by feature',
value=TRUE,
type='logical',
description=c(
'TRUE' = 'Missing values are plotted per sample.',
'FALSE' = 'Missing values are plotted per feature.'
)
)
ents$label_outliers=entity(name='Label outliers',
value=FALSE,
type='logical',
description=c(
'TRUE' = 'Sample labels for potential outliers are displayed on the plot',
'FALSE' = 'Sample labels are not included on the plot.'
)
)
ents$show_counts=entity(name='Show counts',
value=TRUE,
type='logical',
description=c(
'TRUE' = 'The number of samples for each box is displayed.',
'FALSE' = 'The number of samples for each box is not displayed.'
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.