spl2Dc <- function(x.coord,y.coord,at.var=NULL,at.levels=NULL, type="PSANOVA",
nsegments = c(10,10), penaltyord = c(2,2), degree = c(3,3),
nestorder = c(1,1), thetaC=NULL, theta=NULL, sp=FALSE ) {
##
if(length(degree) == 1){degree <- rep(degree,2) }
if(length(nsegments) == 1){nsegments <- rep(nsegments,2) }
if(length(penaltyord) == 1){penaltyord <- rep(penaltyord,2) }
if(length(nestorder) == 1){nestorder <- rep(nestorder,2) }
x.coord.name <- as.character(substitute(list(x.coord)))[-1L]
y.coord.name <- as.character(substitute(list(y.coord)))[-1L]
# x.coord.name <- "col"
# y.coord.name <- "row"
if(!is.numeric(x.coord)){
stop("x.coord argument in spl2D() needs to be numeric.", call. = FALSE)
}
if(!is.numeric(y.coord)){
stop("y.coord argument in spl2D() needs to be numeric.", call. = FALSE)
}
interpret.covarrubias.formula <-
function(formula) {
env <- environment(formula)
if(inherits(formula, "character"))
formula <- as.formula(formula)
tf <- terms.formula(formula, specials = c("SAP", "PSANOVA"))
terms <- attr(tf, "term.labels")
nt <- length(terms)
if(nt != 1)
stop("Error in the specification of the spatial effect: only a sigle bidimensional function is allowed")
res <- eval(parse(text = terms[1]), envir = env)
res
}
bbase <- function(X., XL., XR., NDX., BDEG.) {
# Function for B-spline basis
dx <- (XR. - XL.)/NDX.
knots <- seq(XL. - BDEG.*dx, XR. + BDEG.*dx, by=dx)
P <- outer(X., knots, tpower, BDEG.)
n <- dim(P)[2]
D <- diff(diag(n), diff = BDEG. + 1) / (gamma(BDEG. + 1) * dx ^ BDEG.)
B <- (-1) ^ (BDEG. + 1) * P %*% t(D)
res <- list(B = B, knots = knots)
res
}
tpower <-
function(x, t, p) {
# Function for truncated p-th power function
return((x - t) ^ p * (x > t))
}
Rten2 <-
function(X1,X2) {
one.1 <- matrix(1,1,ncol(X1))
one.2 <- matrix(1,1,ncol(X2))
kronecker(X1,one.2)*kronecker(one.1,X2)
}
MM.basis <-
function (x, xl, xr, ndx, bdeg, penaltyord, decom = 1) {
Bb = bbase(x,xl,xr,ndx,bdeg)
knots <- Bb$knots
B = Bb$B
m = ncol(B)
n = nrow(B)
D = diff(diag(m), differences=penaltyord)
P.svd = svd(crossprod(D))
U.Z = (P.svd$u)[,1:(m-penaltyord)] # eigenvectors
d = (P.svd$d)[1:(m-penaltyord)] # eigenvalues
Z = B%*%U.Z
U.X = NULL
if(decom == 1) {
U.X = ((P.svd$u)[,-(1:(m-penaltyord))])
X = B%*%U.X
} else if (decom == 2){
X = NULL
for(i in 0:(penaltyord-1)){
X = cbind(X,x^i)
}
} else if(decom == 3) {
U.X = NULL
for(i in 0:(penaltyord-1)){
U.X = cbind(U.X,knots[-c((1:penaltyord),(length(knots)- penaltyord + 1):length(knots))]^i)
}
X = B%*%U.X
} else if(decom == 4) { # Wood's 2013
X = B%*%((P.svd$u)[,-(1:(m-penaltyord))])
id.v <- rep(1, nrow(X))
D.temp = X - ((id.v%*%t(id.v))%*%X)/nrow(X)
Xf <- svd(crossprod(D.temp))$u[,ncol(D.temp):1]
X <- X%*%Xf
U.X = ((P.svd$u)[,-(1:(m-penaltyord)), drop = FALSE])%*%Xf
}
list(X = X, Z = Z, d = d, B = B, m = m, D = D, knots = knots, U.X = U.X, U.Z = U.Z)
}
####################
### if we want to use at.var and at.levels
if(is.null(at.var)){
at.var <- rep("A",length(x.coord))
at.name <- "FIELDINST"
at.levels <- "A"
}else{
at.name <- as.character(substitute(list(at)))[-1L]
if(length(at.var) != length(x.coord)){stop("at.var has different length than x.coord and y.coord, please fix.", call. = FALSE)}
if(is.null(at.levels)){at.levels <- levels(as.factor(at.var))}
}
#######################
index <- 1:length(x.coord)
if(!is.numeric(x.coord)){stop("x.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
if(!is.numeric(y.coord)){stop("y.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
#######################
## split data by the "at.name" argument
dat <- data.frame(x.coord, y.coord, at.var, index); colnames(dat) <- c(x.coord.name,y.coord.name,at.name,"index")
missby <- which(is.na(dat[,at.name]))
if(length(missby)>0){stop("We will split using the at.name argument and you have missing values in this column.\nPlease correct.", call. = FALSE)}
dat[,at.name] <- as.factor(dat[,at.name])
data0 <- split(dat, dat[,at.name])
names(data0) <- levels(dat[,at.name])
#######################################
# make sure there's no missing data in coordinate variables
nasx <- which(is.na(dat[,x.coord.name]))
nasy <- which(is.na(dat[,y.coord.name]))
if(length(nasx) > 0 | length(nasy) >0){
stop("x.coord and y.coord columns cannot have NA's", call. = FALSE)
}
#######################################
## now apply the same to all environments
multires <- lapply(data0, function(dxy){
x1 <- dxy[ ,x.coord.name]
x2 <- dxy[ ,y.coord.name]
# print(x2)
#type = type
MM1 = MM.basis(x1, min(x1), max(x1), nsegments[1], degree[1], penaltyord[1], 4)
MM2 = MM.basis(x2, min(x2), max(x2), nsegments[2], degree[2], penaltyord[2], 4)
X1 <- MM1$X; Z1 <- MM1$Z; d1 <- MM1$d; B1 <- MM1$B
X2 <- MM2$X; Z2 <- MM2$Z; d2 <- MM2$d; B2 <- MM2$B
c1 = ncol(B1); c2 = ncol(B2)
# Nested bases
if(nestorder[1] == 1) {
MM1n <- MM1
Z1n <- Z1
c1n <- c1
d1n <- d1
} else {
MM1n = MM.basis(x1, min(x1), max(x1), nsegments[1]/nestorder[1], degree[1], penaltyord[1], 4)
Z1n <- MM1n$Z
d1n <- MM1n$d
c1n <- ncol(MM1n$B)
}
if(nestorder[2] == 1) {
MM2n <- MM2
Z2n <- Z2
c2n <- c2
d2n <- d2
} else {
MM2n = MM.basis(x2, min(x2), max(x2), nsegments[2]/nestorder[2], degree[2], penaltyord[2], 4)
Z2n <- MM2n$Z
d2n <- MM2n$d
c2n <- ncol(MM2n$B)
}
x.fixed <- y.fixed <- ""
for(i in 0:(penaltyord[1]-1)){
if(i == 1)
x.fixed <- c(x.fixed, x.coord.name)
else if( i > 1)
x.fixed <- c(x.fixed, paste(x.coord.name, "^", i, sep = ""))
}
for(i in 0:(penaltyord[2]-1)){
if(i == 1)
y.fixed <- c(y.fixed, y.coord.name)
else if( i > 1)
y.fixed <- c(y.fixed, paste(y.coord.name, "^", i, sep = ""))
}
xy.fixed <- NULL
for(i in 1:length(y.fixed)) {
xy.fixed <- c(xy.fixed, paste(y.fixed[i], x.fixed, sep= ""))
}
xy.fixed <- xy.fixed[xy.fixed != ""]
names.fixed <- xy.fixed
smooth.comp <- paste("f.", x.coord.name,".", y.coord.name,"", sep = "")
if(type == "SAP") {
names.random <- paste(smooth.comp, c(x.coord.name, y.coord.name), sep = "|")
X = Rten2(X2, X1)
# Delete the intercept
X <- X[,-1,drop = FALSE]
Z = cbind(Rten2(X2, Z1), Rten2(Z2, X1), Rten2(Z2n, Z1n))
dim.random <- c((c1 -penaltyord[1])*penaltyord[2] , (c2 - penaltyord[2])*penaltyord[1], (c1n - penaltyord[1])*(c2n - penaltyord[2]))
dim <- list(fixed = rep(1, ncol(X)), random = sum(dim.random))
names(dim$fixed) <- names.fixed
names(dim$random) <- paste(smooth.comp, "Global")
# Variance/Covariance components
g1u <- rep(1, penaltyord[2])%x%d1
g2u <- d2%x%rep(1, penaltyord[1])
g1b <- rep(1, c2n - penaltyord[2])%x%d1n
g2b <- d2n%x%rep(1, c1n - penaltyord[1])
g <- list()
g[[1]] <- c(g1u, rep(0, dim.random[2]), g1b)
g[[2]] <- c(rep(0, dim.random[1]), g2u, g2b)
names(g) <- names.random
} else {
one1. <- X1[,1, drop = FALSE]
one2. <- X2[,1, drop = FALSE]
x1. <- X1[,-1, drop = FALSE]
x2. <- X2[,-1, drop = FALSE]
# Fixed and random matrices
X <- Rten2(X2, X1)
# Delete the intercept
X <- X[,-1,drop = FALSE]
Z <- cbind(Rten2(one2., Z1), Rten2(Z2, one1.), Rten2(x2., Z1), Rten2(Z2, x1.), Rten2(Z2n, Z1n))
dim.random <- c((c1-penaltyord[1]), (c2-penaltyord[2]), (c1-penaltyord[1])*(penaltyord[2]-1), (c2-penaltyord[2])*(penaltyord[1]-1), (c1n-penaltyord[2])*(c2n-penaltyord[2]))
# Variance/Covariance components
g1u <- d1
g2u <- d2
g1v <- rep(1, penaltyord[2] - 1)%x%d1
g2v <- d2%x%rep(1,penaltyord[1] - 1)
g1b <- rep(1, c2n - penaltyord[2])%x%d1n
g2b <- d2n%x%rep(1, c1n - penaltyord[1])
g <- list()
if(type == "SAP.ANOVA") {
g[[1]] <- c(g1u, rep(0, sum(dim.random[2:5])))
g[[2]] <- c(rep(0, dim.random[1]), g2u, rep(0, sum(dim.random[3:5])))
g[[3]] <- c(rep(0, sum(dim.random[1:2])), g1v, rep(0, dim.random[4]), g1b)
g[[4]] <- c(rep(0, sum(dim.random[1:3])), g2v, g2b)
names.random <- c(paste("f.", x.coord.name,"", sep = ""), paste("f.", y.coord.name,"", sep = ""), paste(smooth.comp, c(x.coord.name, y.coord.name), sep = "."))
dim <- list(fixed = rep(1, ncol(X)), random = c(dim.random[1:2], sum(dim.random[-(1:2)])))
names(dim$fixed) <- names.fixed
names(dim$random) <- c(names.random[1:2], paste(smooth.comp, "Global"))
names(g) <- names.random
} else {
g[[1]] <- c(g1u, rep(0, sum(dim.random[2:5])))
g[[2]] <- c(rep(0, dim.random[1]), g2u, rep(0, sum(dim.random[3:5])))
g[[3]] <- c(rep(0, sum(dim.random[1:2])), g1v, rep(0, sum(dim.random[4:5])))
g[[4]] <- c(rep(0, sum(dim.random[1:3])), g2v, rep(0, dim.random[5]))
g[[5]] <- c(rep(0, sum(dim.random[1:4])), g1b + g2b)
names.random <- c(paste("f.", x.coord.name,"", sep = ""), paste("f.", y.coord.name,"", sep = ""),
paste("f.", x.coord.name,".", y.coord.name, sep = ""),
paste(x.coord.name,".f.", y.coord.name,"", sep = ""),
paste("f.", x.coord.name,".f.", y.coord.name,"", sep = ""))
# print(names.random)
dim <- list(fixed = rep(1, ncol(X)), random = dim.random)
names(dim$fixed) <- names.fixed
names(dim$random) <- names.random
names(g) <- names.random
}
}
colnames(X) <- names.fixed
colnames(Z) <- paste(smooth.comp, 1:ncol(Z), sep = ".")
attr(dim$fixed, "random") <- attr(dim$fixed, "sparse") <- rep(FALSE, length(dim$fixed))
attr(dim$fixed, "spatial") <- rep(TRUE, length(dim$fixed))
attr(dim$random, "random") <- attr(dim$random, "spatial") <- rep(TRUE, length(dim$random))
attr(dim$random, "sparse") <- rep(FALSE, length(dim$random))
terms <- list()
terms$MM <- list(MM1 = MM1, MM2 = MM2)
terms$MMn <- list(MM1 = MM1n, MM2 = MM2n)
#terms$terms.formula <- res
# attr(terms, "term") <- smooth.comp
# Initialize variance components
init.var <- rep(1, length(g))
res <- list(X = X, Z = Z, dim = dim, g = g, init.var = init.var)
M <- list(cbind(res$X,res$Z))
return(M)
})
names(multires) <- at.levels
# print(str(multires))
# print(lapply(multires,colnames))
toFill <- lapply(data0,function(x){x$index})
#############################################
## CAPTURE COLNAMES AND BUILD A MATRIX WITH THOSE NAMES
myNames <- list()
for(k in 1:1){
# print(lapply(multires,function(x){colnames(x[[k]])}))
myNames[[k]] <- lapply(multires,function(x){colnames(x[[k]])})
}; names(myNames) <- c("all")
# print(myNames)
#################################
## move matrices to the right size
Zup <- list() # store incidence matrices
Zup2 <- list() # store incidence matrices
Kup <- list() # store relationship matrices between levels in Z
typevc <- numeric() # store wheter is a variance (1) or covariance (2;allowed to be negative) component
re_name <- character() # store the name of the random effect
counter <- 1
counter2 <- 1
for(k in 1:1){ # for each tensor product (single matrix in this case)
for(j in 1:length(multires)){ # for each environment or by.level
if(names(multires)[j] %in% at.levels){
# print("yes")
Z <- matrix(0,nrow=nrow(dat),ncol=length(myNames[[k]][[j]]))
colnames(Z) <- myNames[[k]][[j]]
# print(dim(Z))
prov <- multires[[j]][[k]]
# print(dim(prov))
Z[toFill[[j]],colnames(prov)] <- as.matrix(prov)
attr(Z,"variables") <- c(x.coord.name, y.coord.name)
Zup[[counter]] <- Z
names(Zup)[counter] <- paste0(names(multires)[j],":",names(myNames)[k])
Gu1 <- diag(ncol(Z)); colnames(Gu1) <- rownames(Gu1) <- colnames(Z)
Kup[[counter]] <- Gu1
typevc[counter] <- 1
re_name[counter] <- names(Zup)[counter]
counter <- counter + 1
} # else don't fill that portion of the matrix
}
}
Gti=NULL
Gtc=NULL
vcs <- diag(length(Zup)); rownames(vcs) <- colnames(vcs) <- names(Zup)
#################################
namess2 <- c(x.coord.name, y.coord.name)
if(is.null(theta)){
theta <- diag(length(Zup))*.15
colnames(theta) <- rownames(theta) <- names(Zup)
}
if(is.null(thetaC)){
thetaC <- diag(length(Zup))
colnames(thetaC) <- rownames(thetaC) <- names(Zup)
}
thetaF <- diag(length(Zup))
sp0 <- ifelse(sp,1,0)
sp0 <- rep(sp0,nrow(thetaF))
if(sp){thetaF <- thetaF*0}
partitionsR <- list() ## only meaningful for residuals
Zup <- lapply(Zup,function(x){ as(as(as( x , "dMatrix"), "generalMatrix"), "CsparseMatrix") }) # as(x,Class="dgCMatrix")
Kup <- as(as(as( Kup[[1]] , "dMatrix"), "generalMatrix"), "CsparseMatrix") # as(Kup[[1]],Class="dgCMatrix")
attr(Kup, "inverse") =TRUE
S3 <- list(Z=Zup,Gu=Kup,theta=theta,thetaC=thetaC,thetaF=thetaF,partitionsR=partitionsR, sp=sp0)
return(S3)
}
spl2Dmats <- function(x.coord.name,
y.coord.name,
data,
at.name,
at.levels,
nsegments = NULL,
minbound=NULL,
maxbound=NULL,
degree = c(3,3),
penaltyord = c(2,2),
nestorder = c(1,1),
method="Lee" ) {
# x.coord.name <- as.character(substitute(list(x.coord)))[-1L]
# y.coord.name <- as.character(substitute(list(y.coord)))[-1L]
x.coord <- data[,x.coord.name]
y.coord <- data[,y.coord.name]
data[,paste0(x.coord.name,"f")] <- as.factor(data[,x.coord.name])
data[,paste0(y.coord.name,"f")] <- as.factor(data[,y.coord.name])
if(!is.numeric(x.coord)){stop("x.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
if(!is.numeric(y.coord)){stop("y.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
#######################
## split data by the "at.name" argument
if(missing(at.name)){ # if user doesn't provide the at.name argument
dat <- data.frame(x.coord, y.coord); colnames(dat) <- c(x.coord.name,y.coord.name)
dat$FIELDINST <- "FIELD1"
at.name="FIELDINST"
dat[,at.name] <- as.factor(dat[,at.name])
data0 <- split(dat, dat[,at.name])
at.levels="FIELD1"
# for the actual dataset
data[,at.name] <- "FIELD1"
}else{
check <- which(colnames(data)==at.name)
if(length(check)==0){stop("at.name column not found in the data provided", call. = FALSE)}else{
at <- data[,at.name]
dat <- data.frame(x.coord, y.coord, at); colnames(dat) <- c(x.coord.name,y.coord.name,at.name)
missby <- which(is.na(dat[,at.name]))
if(length(missby)>0){stop("We will split using the at.name argument and you have missing values in this column.\nPlease correct.", call. = FALSE)}
dat[,at.name] <- as.factor(dat[,at.name])
data0 <- split(dat, dat[,at.name])
names(data0) <- levels(dat[,at.name])
}
}
if(missing(at.levels)){
at.levels <- levels(dat[,at.name])
}
#######################################
# make sure there's no missing data in coordinate variables
nasx <- which(is.na(dat[,x.coord.name]))
nasy <- which(is.na(dat[,y.coord.name]))
if(length(nasx) > 0 | length(nasy) >0){
stop("x.coord and y.coord columns cannot have NA's", call. = FALSE)
}
##########################################
#### now calculate TP design matrices for each by.level
multires <- lapply(data0, function(dxy){
# use function to extract incidence matrices
TPXZg <- tpsmmbwrapper(columncoordinates=x.coord.name, rowcoordinates=y.coord.name,
maxbound=maxbound, minbound=minbound, penaltyord=penaltyord,
data=dxy, nsegments=nsegments, nestorder=nestorder, asreml="grp", method=method)
# extract the incidence matrices
fC <- TPXZg$data[,TPXZg$grp$TP.R.1_fcol]
fR <- TPXZg$data[,TPXZg$grp$TP.C.1_frow]
fC.R <- TPXZg$data[,TPXZg$grp$TP.R.2_fcol]
C.fR <- TPXZg$data[,TPXZg$grp$TP.C.2_frow]
fC.fR <- TPXZg$data[,TPXZg$grp$TP_fcol_frow]
rest <- TPXZg$data[,min(c(which(colnames(TPXZg$data)=="TP.col"),which(colnames(TPXZg$data)=="TP.row"))):(min(c(TPXZg$grp$TP.R.1_fcol,TPXZg$grp$TP.C.1_frow))-1)]
all <- TPXZg$data[,TPXZg$grp$All]
# return output
return(list(fC,fR,fC.R,C.fR,fC.fR,all,rest))
})
# print(str(multires))
nrows <- unlist(lapply(data0,nrow))
end <- numeric(); for(l in 1:length(nrows)){end[l] <- sum(nrows[1:l]) }
start <- numeric(); for(l in 1:length(nrows)){start[l] <- end[l]-nrows[l]+1 }
#############################################
## CAPTURE COLNAMES AND BUILD A MATRIX WITH THOSE NAMES
nColList <- list()
for(k in 1:6){ # for each environment or by.level
nColList[[k]] <- unlist(lapply(multires,function(x){colnames(x[[k]])}))
}
uniqueNames <- lapply(nColList,unique) # 5 element in a list with names for matrices
# build the matrices
Zl <- list()
for(k in 1:6){ # for each tensor product
Z <- matrix(0,nrow=nrow(dat),ncol=length(uniqueNames[[k]]))
colnames(Z) <- uniqueNames[[k]]
for(j in 1:length(multires)){ # for each environment or by.level
if(names(multires)[j] %in% at.levels){
prov <- multires[[j]][[k]]
Z[start[j]:end[j],colnames(prov)] <- as.matrix(prov)
} # else don't fill that portion of the matrix
}
attr(Z,"variables") <- c(x.coord.name, y.coord.name)
Zl[[k]] <- Z
}
names(Zl) <- c("fC","fR","fC.R", "C.fR","fC.fR","all")
data[,at.name] <- as.factor(data[,at.name])
dataToreturn <- split(data, data[at.name])
dataToreturn <- do.call(rbind,dataToreturn)
rest <- lapply(multires,function(x){x[[7]]})
rest <- do.call(rbind,rest)
dataToreturn <- cbind(dataToreturn,rest)
Zl$data <- dataToreturn
return(Zl)
}
tpsmmbwrapper <- function (columncoordinates, rowcoordinates, data, nsegments=NULL,
minbound=NULL, maxbound=NULL, degree = c(3, 3), penaltyord = c(2, 2),
nestorder = c(1, 1), asreml = "mbf", eigenvalues = "include",
method = "Lee", stub = NULL)
{
if (missing(columncoordinates))
stop("columncoordinates argument must be set")
if (missing(rowcoordinates))
stop("rowcoordinates argument must be set")
if (missing(data))
stop("data argument must be set")
col <- sort(unique(data[[columncoordinates]]))
nuc <- length(col)
col.match <- match(data[[columncoordinates]], col)
row <- sort(unique(data[[rowcoordinates]]))
nur <- length(row)
row.match <- match(data[[rowcoordinates]], row)
nv <- length(data[[columncoordinates]])
if (is.null(minbound)) {
cminval <- min(col)
rminval <- min(row)
} else {
cminval <- min(c(minbound[1], min(col)))
if (length(minbound) < 2) {
rminval <- min(c(minbound[1], min(row)))
}
else {
rminval <- min(c(minbound[2], min(row)))
}
}
if (is.null(maxbound)) {
cmaxval <- max(col)
rmaxval <- max(row)
}
else {
cmaxval <- max(c(maxbound[1], max(col)))
if (length(maxbound) < 2) {
rmaxval <- max(c(maxbound[1], max(row)))
}
else {
rmaxval <- max(c(maxbound[2], max(row)))
}
}
if (is.null(nsegments)) {
nsegcol <- nuc - 1
nsegrow <- nur - 1
}
else {
nsegcol <- max(c(nsegments[1], 2))
}
if (length(nsegments) < 2) {
nsegrow <- max(c(nsegments[1], 2))
}
else {
nsegrow <- max(c(nsegments[2], 2))
}
nestcol <- floor(nestorder[1])
if (length(nestorder) < 2)
nestrow <- floor(nestorder[1])
else nestrow <- floor(nestorder[2])
nsncol <- 0
if (nestcol > 1) {
if (nsegcol%%nestcol != 0)
warning("Column nesting ignored: number of column segments must be a multiple of nesting order")
else nsncol <- nsegcol/nestcol
}
nsnrow <- 0
if (nestrow > 1) {
if (nsegrow%%nestrow != 0)
warning("Row nesting ignored: number of row segments must be a multiple of nesting order")
else nsnrow <- nsegrow/nestrow
}
Bc <- bbasis(col, cminval, cmaxval, nsegcol, degree[1])
nc <- ncol(Bc)
if (length(degree) < 2)
degr <- degree[1]
else degr <- degree[2]
Br <- bbasis(row, rminval, rmaxval, nsegrow, degr)
nr <- ncol(Br)
if (nsncol > 0) {
Bcn <- bbasis(col, cminval, cmaxval, nsncol, degree[1])
ncn <- ncol(Bcn)
}
else ncn <- nc
if (nsnrow > 1) {
Brn <- bbasis(row, rminval, rmaxval, nsnrow, degr)
nrn <- ncol(Brn)
}
else nrn <- nr
diff.c <- penaltyord[[1]]
Dc <- diff(diag(nc), diff = diff.c)
svd.c <- svd(crossprod(Dc))
nbc <- nc - diff.c
U.Zc <- svd.c$u[, c(1:nbc)]
U.Xc <- svd.c$u[, -c(1:nbc)]
L.c <- sqrt(svd.c$d[c(1:nbc)])
diagc <- L.c^2
BcU <- Bc %*% U.Zc
BcX <- Bc %*% U.Xc
BcULi <- BcU %*% diag(1/L.c)
if ("include" %in% eigenvalues) {
BcZmat.df <- as.data.frame(BcULi)
BcZmat <- BcULi
}
else {
BcZmat.df <- as.data.frame(BcU)
BcZmat <- BcU
}
BcZmat.df$TP.col <- col
mat1c <- matrix(rep(1, nuc), nrow = nuc)
BcXadj <- BcX - mat1c %*% t(mat1c) %*% BcX/nuc
Xfc <- (svd(crossprod(BcXadj)))$u[, c(ncol(BcXadj):1)]
BcX <- BcX %*% Xfc
if (BcX[1, 1] < 0)
BcX[, 1] <- -1 * BcX[, 1]
if (BcX[1, 2] > 0)
BcX[, 2] <- -1 * BcX[, 2]
if (nsncol > 0) {
Dcn <- diff(diag(ncn), diff = diff.c)
svd.cn <- svd(crossprod(Dcn))
nbcn <- ncn - diff.c
U.Zcn <- svd.cn$u[, c(1:nbcn)]
U.Xcn <- svd.cn$u[, -c(1:nbcn)]
L.cn <- sqrt(svd.cn$d[c(1:nbcn)])
BcnU <- Bcn %*% U.Zcn
BcnX <- Bcn %*% U.Xcn
}
else {
nbcn <- nbc
BcnU <- BcU
L.cn <- L.c
}
if (length(penaltyord) < 2) {
diff.r <- penaltyord[1]
}
else {
diff.r <- penaltyord[2]
}
Dr <- diff(diag(nr), diff = diff.r)
svd.r <- svd(crossprod(Dr))
nbr <- nr - diff.r
U.Zr <- svd.r$u[, c(1:nbr)]
U.Xr <- svd.r$u[, -c(1:nbr)]
L.r <- sqrt(svd.r$d[c(1:nbr)])
diagr <- L.r^2
BrU <- Br %*% U.Zr
BrX <- Br %*% U.Xr
BrULi <- BrU %*% diag(1/L.r)
if ("include" %in% eigenvalues) {
BrZmat.df <- as.data.frame(BrULi)
BrZmat <- BrULi
}
else {
BrZmat.df <- as.data.frame(BrU)
BrZmat <- BrU
}
BrZmat.df$TP.row <- row
mat1r <- matrix(rep(1, nur), nrow = nur)
BrXadj <- BrX - mat1r %*% t(mat1r) %*% BrX/nur
Xfr <- (svd(crossprod(BrXadj)))$u[, c(ncol(BrXadj):1)]
BrX <- BrX %*% Xfr
if (BrX[1, 1] < 0)
BrX[, 1] <- -1 * BrX[, 1]
if (BrX[1, 2] > 0)
BrX[, 2] <- -1 * BrX[, 2]
if (nsnrow > 0) {
Drn <- diff(diag(nrn), diff = diff.r)
svd.rn <- svd(crossprod(Drn))
nbrn <- nrn - diff.r
U.Zrn <- svd.rn$u[, c(1:nbrn)]
U.Xrn <- svd.rn$u[, -c(1:nbrn)]
L.rn <- sqrt(svd.rn$d[c(1:nbrn)])
BrnU <- Brn %*% U.Zrn
BrnX <- Brn %*% U.Xrn
}
else {
nbrn <- nbr
BrnU <- BrU
L.rn <- L.r
}
A <- 10^(floor(log10(max(row))) + 1)
row.index <- rep(row, times = nuc)
col.index <- rep(col, each = nur)
index <- A * col.index + row.index
C.R <- A * data[[columncoordinates]] + data[[rowcoordinates]]
BcrZ1 <- BcnU[col.match, ] %x% matrix(rep(1, nbrn), nrow = 1,
ncol = nbrn)
BcrZ2 <- matrix(rep(1, nbcn), nrow = 1, ncol = nbcn) %x%
BrnU[row.match, ]
BcrZ <- BcrZ1 * BcrZ2
diagrx <- rep(L.cn^2, each = nbrn)
diagcx <- rep(L.rn^2, times = nbcn)
if ("Lee" %in% method) {
diagcr <- diagrx + diagcx
}
if ("Wood" %in% method) {
diagcr <- diagrx * diagcx
}
if (!("Lee" %in% method) & !("Wood" %in% method)) {
stop("Invalid setting of method argument")
}
BcrZLi <- BcrZ %*% diag(1/sqrt(diagcr))
if ("include" %in% eigenvalues) {
BcrZmat.df <- as.data.frame(BcrZLi)
BcrZmat <- BcrZLi
}
else {
BcrZmat.df <- as.data.frame(BcrZ)
BcrZmat <- BcrZ
}
BcrZmat.df$TP.CxR <- C.R
tracelist <- list()
for (i in 1:diff.c) {
nm <- paste0("Xc", i, ":Zr")
tempmat <- (BcX[col.match, i] %x% matrix(rep(1, nbr),
nrow = 1)) * BrZmat[row.match, ]
if ("include" %in% eigenvalues)
tempmatsc <- tempmat
else tempmatsc <- tempmat * (rep(1, nv) %*% matrix((1/diagr),
nrow = 1))
tracelist[nm] <- sum(tempmatsc * tempmat)
}
for (i in 1:diff.r) {
nm <- paste0("Zc:Xr", i)
tempmat <- BcZmat[col.match, ] * (matrix(rep(1, nbc),
nrow = 1) %x% BrX[row.match, i])
if ("include" %in% eigenvalues)
tempmatsc <- tempmat
else tempmatsc <- tempmat * (rep(1, nv) %*% matrix((1/diagc),
nrow = 1))
tracelist[nm] <- sum(tempmatsc * tempmat)
}
if ("include" %in% eigenvalues)
tracelist["Zc:Zr"] <- sum(BcrZmat * BcrZmat)
else {
tempmatsc <- BcrZmat * (rep(1, nv) %*% matrix((1/diagcr),
nrow = 1))
tracelist["Zc:Zr"] <- sum(tempmatsc * BcrZmat)
}
outdata <- as.data.frame(data)
outdata$TP.col <- data[[columncoordinates]]
outdata$TP.row <- data[[rowcoordinates]]
outdata$TP.CxR <- C.R
BcrX1 <- BcX[col.match, ] %x% matrix(rep(1, diff.r), nrow = 1)
BcrX2 <- matrix(rep(1, diff.c), nrow = 1) %x% BrX[row.match,
]
BcrX <- BcrX1 * BcrX2
fixed <- list()
fixed$col <- data.frame(row.names = C.R)
for (i in 1:diff.c) {
c.fixed <- paste("TP.C", ".", i, sep = "")
outdata[c.fixed] <- BcX[col.match, i]
fixed$col[c.fixed] <- BcX[col.match, i]
}
fixed$row <- data.frame(row.names = C.R)
for (i in 1:diff.r) {
r.fixed <- paste("TP.R", ".", i, sep = "")
outdata[r.fixed] <- BrX[row.match, i]
fixed$row[r.fixed] <- BrX[row.match, i]
}
ncolX <- diff.c * diff.r
fixed$int <- data.frame(row.names = C.R)
for (i in 1:ncolX) {
cr.fixed <- paste("TP.CR", ".", i, sep = "")
outdata[cr.fixed] <- BcrX[, i]
fixed$int[cr.fixed] <- BcrX[, i]
}
if (!missing(stub)) {
cname <- paste0("BcZ", stub, ".df")
rname <- paste0("BrZ", stub, ".df")
crname <- paste0("BcrZ", stub, ".df")
}
else {
cname <- "BcZ.df"
rname <- "BrZ.df"
crname <- "BcrZ.df"
}
mbftext <- paste0("list(TP.col=list(key=c(\"TP.col\",\"TP.col\"),cov=\"",
cname, "\"),")
mbftext <- paste0(mbftext, "TP.row=list(key=c(\"TP.row\",\"TP.row\"),cov=\"",
rname, "\"),")
mbftext <- paste0(mbftext, "TP.CxR=list(key=c(\"TP.CxR\",\"TP.CxR\"),cov=\"",
crname, "\"))")
mbflist <- eval(parse(text = mbftext))
if ("grp" %in% asreml) {
grp <- list()
listnames <- list()
start <- length(outdata)
start0 <- start
scale <- 1
j <- 1
for (i in 1:diff.c) {
nm0 <- paste0(names(fixed$col[i]), "_frow")
listnames[j] <- nm0
for (k in 1:nbr) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * fixed$col[[i]] * BrZmat[row.match,
k]
}
grp[[j]] <- seq(from = start + 1, to = start + nbr,
by = 1)
start <- start + nbr
j <- j + 1
}
for (i in 1:diff.r) {
nm0 <- paste0(names(fixed$row[i]), "_fcol")
listnames[j] <- nm0
for (k in 1:nbc) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * fixed$row[[i]] * BcZmat[col.match,
k]
}
grp[[j]] <- seq(from = start + 1, to = start + nbc,
by = 1)
start <- start + nbc
j <- j + 1
}
m <- 0
nm0 <- "TP_fcol_frow"
listnames[j] <- nm0
for (k in 1:(nbrn * nbcn)) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * BcrZmat[, k]
}
grp[[j]] <- seq(from = start + 1, to = start + (nbcn *
nbrn), by = 1)
end <- start + (nbcn * nbrn)
j <- j + 1
listnames[j] <- "All"
grp[[j]] <- seq(from = start0 + 1, to = end, by = 1)
grp <- structure(grp, names = listnames)
}
if ("sepgrp" %in% asreml) {
grp <- list()
listnames <- list()
start <- length(outdata)
nm0 <- "TP_C"
listnames[1] <- nm0
for (i in 1:diff.c) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- fixed$col[[i]]
}
grp[[1]] <- seq(from = start + 1, to = start + diff.c,
by = 1)
start <- start + diff.c
nm0 <- "TP_R"
listnames[2] <- nm0
for (i in 1:diff.r) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- fixed$row[[i]]
}
grp[[2]] <- seq(from = start + 1, to = start + diff.r,
by = 1)
start <- start + diff.r
nm0 <- "TP_fcol"
listnames[3] <- nm0
for (k in 1:nbc) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BcZmat[col.match, k]
}
grp[[3]] <- seq(from = start + 1, to = start + nbc, by = 1)
start <- start + nbc
nm0 <- "TP_frow"
listnames[4] <- nm0
for (k in 1:nbr) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BrZmat[row.match, k]
}
grp[[4]] <- seq(from = start + 1, to = start + nbr, by = 1)
start <- start + nbr
grp <- structure(grp, names = listnames)
nm0 <- "TP_fcol_frow"
listnames[5] <- nm0
for (k in 1:(nbrn * nbcn)) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BcrZmat[, k]
}
grp[[5]] <- seq(from = start + 1, to = start + (nbcn *
nbrn), by = 1)
grp <- structure(grp, names = listnames)
}
if ("own" %in% asreml) {
grp <- list()
listnames <- list()
listnames[1] <- "All"
start <- length(outdata)
nm0 <- "Xc_Zr"
Xc_Zr <- (BcX[col.match, ] %x% matrix(rep(1, nbr), nrow = 1)) *
(matrix(rep(1, diff.c), nrow = 1) %x% BrZmat[row.match,
])
nXc_Zr <- ncol(Xc_Zr)
for (i in 1:nXc_Zr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Xc_Zr[, i]
}
nm0 <- "Zc_Xr"
Zc_Xr <- (BcZmat[col.match, ] %x% matrix(rep(1, diff.r),
nrow = 1)) * (matrix(rep(1, nbc), nrow = 1) %x% BrX[row.match,
])
nZc_Xr <- ncol(Zc_Xr)
for (i in 1:nZc_Xr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Zc_Xr[, i]
}
nm0 <- "Zc_Zr"
Zc_Zr <- BcrZmat
nZc_Zr <- ncol(Zc_Zr)
for (i in 1:nZc_Zr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Zc_Zr[, i]
}
grp[[1]] <- seq(from = start + 1, to = start + nXc_Zr +
nZc_Xr + nZc_Zr, by = 1)
grp <- structure(grp, names = listnames)
}
res <- list()
res$data <- outdata
res$mbflist <- mbflist
res[["BcZ.df"]] <- BcZmat.df
res[["BrZ.df"]] <- BrZmat.df
res[["BcrZ.df"]] <- BcrZmat.df
res$dim <- c(diff.c = diff.c, nbc = nbc, nbcn = nbcn, diff.r = diff.r,
nbr = nbr, nbrn = nbrn)
res$trace <- tracelist
if ("grp" %in% asreml)
res$grp <- grp
if ("sepgrp" %in% asreml)
res$grp <- grp
if ("own" %in% asreml)
res$grp <- grp
if ("mbf" %in% asreml)
res$grp <- NULL
if (!("include" %in% eigenvalues))
res$eigen <- list(diagc = diagc, diagr = diagr, diagcr = diagcr)
res
}
bbasis <- function (x, xl, xr, ndx, deg)
{
tpower <- function(x, t, p) {
(x - t)^p * (x > t)
}
dx <- (xr - xl)/ndx
knots <- seq(xl - deg * dx, xr + deg * dx, by = dx)
P <- outer(x, knots, tpower, deg)
n <- dim(P)[2]
D <- diff(diag(n), diff = deg + 1)/(gamma(deg + 1) * dx^deg)
B <- (-1)^(deg + 1) * P %*% t(D)
B
}
tps <- function (columncoordinates, rowcoordinates, nsegments=NULL,
minbound=NULL, maxbound=NULL, degree = c(3, 3), penaltyord = c(2, 2),
nestorder = c(1, 1), asreml = "grp", eigenvalues = "include",
method = "Lee", stub = NULL)
{
if (missing(columncoordinates))
stop("columncoordinates argument must be set")
if (missing(rowcoordinates))
stop("rowcoordinates argument must be set")
col <- columncoordinates
nuc <- length(col)
col.match <- match(columncoordinates, col)
row <- sort(unique(rowcoordinates))
nur <- length(row)
row.match <- match(rowcoordinates, row)
nv <- length(columncoordinates)
if (is.null(minbound)) {
cminval <- min(col)
rminval <- min(row)
} else {
cminval <- min(c(minbound[1], min(col)))
if (length(minbound) < 2) {
rminval <- min(c(minbound[1], min(row)))
}
else {
rminval <- min(c(minbound[2], min(row)))
}
}
if (is.null(maxbound)) {
cmaxval <- max(col)
rmaxval <- max(row)
}
else {
cmaxval <- max(c(maxbound[1], max(col)))
if (length(maxbound) < 2) {
rmaxval <- max(c(maxbound[1], max(row)))
}
else {
rmaxval <- max(c(maxbound[2], max(row)))
}
}
if (is.null(nsegments)) {
nsegcol <- nuc - 1
nsegrow <- nur - 1
}
else {
nsegcol <- max(c(nsegments[1], 2))
}
if (length(nsegments) < 2) {
nsegrow <- max(c(nsegments[1], 2))
}
else {
nsegrow <- max(c(nsegments[2], 2))
}
nestcol <- floor(nestorder[1])
if (length(nestorder) < 2)
nestrow <- floor(nestorder[1])
else nestrow <- floor(nestorder[2])
nsncol <- 0
if (nestcol > 1) {
if (nsegcol%%nestcol != 0)
warning("Column nesting ignored: number of column segments must be a multiple of nesting order")
else nsncol <- nsegcol/nestcol
}
nsnrow <- 0
if (nestrow > 1) {
if (nsegrow%%nestrow != 0)
warning("Row nesting ignored: number of row segments must be a multiple of nesting order")
else nsnrow <- nsegrow/nestrow
}
Bc <- bbasis(col, cminval, cmaxval, nsegcol, degree[1])
nc <- ncol(Bc)
if (length(degree) < 2)
degr <- degree[1]
else degr <- degree[2]
Br <- bbasis(row, rminval, rmaxval, nsegrow, degr)
nr <- ncol(Br)
if (nsncol > 0) {
Bcn <- bbasis(col, cminval, cmaxval, nsncol, degree[1])
ncn <- ncol(Bcn)
}
else ncn <- nc
if (nsnrow > 1) {
Brn <- bbasis(row, rminval, rmaxval, nsnrow, degr)
nrn <- ncol(Brn)
}
else nrn <- nr
diff.c <- penaltyord[[1]]
Dc <- diff(diag(nc), diff = diff.c)
svd.c <- svd(crossprod(Dc))
nbc <- nc - diff.c
U.Zc <- svd.c$u[, c(1:nbc)]
U.Xc <- svd.c$u[, -c(1:nbc)]
L.c <- sqrt(svd.c$d[c(1:nbc)])
diagc <- L.c^2
BcU <- Bc %*% U.Zc
BcX <- Bc %*% U.Xc
BcULi <- BcU %*% diag(1/L.c)
if ("include" %in% eigenvalues) {
BcZmat.df <- as.data.frame(BcULi)
BcZmat <- BcULi
}
else {
BcZmat.df <- as.data.frame(BcU)
BcZmat <- BcU
}
BcZmat.df$TP.col <- col
mat1c <- matrix(rep(1, nuc), nrow = nuc)
BcXadj <- BcX - mat1c %*% t(mat1c) %*% BcX/nuc
Xfc <- (svd(crossprod(BcXadj)))$u[, c(ncol(BcXadj):1)]
BcX <- BcX %*% Xfc
if (BcX[1, 1] < 0)
BcX[, 1] <- -1 * BcX[, 1]
if (BcX[1, 2] > 0)
BcX[, 2] <- -1 * BcX[, 2]
if (nsncol > 0) {
Dcn <- diff(diag(ncn), diff = diff.c)
svd.cn <- svd(crossprod(Dcn))
nbcn <- ncn - diff.c
U.Zcn <- svd.cn$u[, c(1:nbcn)]
U.Xcn <- svd.cn$u[, -c(1:nbcn)]
L.cn <- sqrt(svd.cn$d[c(1:nbcn)])
BcnU <- Bcn %*% U.Zcn
BcnX <- Bcn %*% U.Xcn
}
else {
nbcn <- nbc
BcnU <- BcU
L.cn <- L.c
}
if (length(penaltyord) < 2) {
diff.r <- penaltyord[1]
}
else {
diff.r <- penaltyord[2]
}
Dr <- diff(diag(nr), diff = diff.r)
svd.r <- svd(crossprod(Dr))
nbr <- nr - diff.r
U.Zr <- svd.r$u[, c(1:nbr)]
U.Xr <- svd.r$u[, -c(1:nbr)]
L.r <- sqrt(svd.r$d[c(1:nbr)])
diagr <- L.r^2
BrU <- Br %*% U.Zr
BrX <- Br %*% U.Xr
BrULi <- BrU %*% diag(1/L.r)
if ("include" %in% eigenvalues) {
BrZmat.df <- as.data.frame(BrULi)
BrZmat <- BrULi
}
else {
BrZmat.df <- as.data.frame(BrU)
BrZmat <- BrU
}
BrZmat.df$TP.row <- row
mat1r <- matrix(rep(1, nur), nrow = nur)
BrXadj <- BrX - mat1r %*% t(mat1r) %*% BrX/nur
Xfr <- (svd(crossprod(BrXadj)))$u[, c(ncol(BrXadj):1)]
BrX <- BrX %*% Xfr
if (BrX[1, 1] < 0)
BrX[, 1] <- -1 * BrX[, 1]
if (BrX[1, 2] > 0)
BrX[, 2] <- -1 * BrX[, 2]
if (nsnrow > 0) {
Drn <- diff(diag(nrn), diff = diff.r)
svd.rn <- svd(crossprod(Drn))
nbrn <- nrn - diff.r
U.Zrn <- svd.rn$u[, c(1:nbrn)]
U.Xrn <- svd.rn$u[, -c(1:nbrn)]
L.rn <- sqrt(svd.rn$d[c(1:nbrn)])
BrnU <- Brn %*% U.Zrn
BrnX <- Brn %*% U.Xrn
}
else {
nbrn <- nbr
BrnU <- BrU
L.rn <- L.r
}
A <- 10^(floor(log10(max(row))) + 1)
row.index <- rep(row, times = nuc)
col.index <- rep(col, each = nur)
index <- A * col.index + row.index
C.R <- A * columncoordinates + rowcoordinates
BcrZ1 <- BcnU[col.match, ] %x% matrix(rep(1, nbrn), nrow = 1,
ncol = nbrn)
BcrZ2 <- matrix(rep(1, nbcn), nrow = 1, ncol = nbcn) %x%
BrnU[row.match, ]
BcrZ <- BcrZ1 * BcrZ2
diagrx <- rep(L.cn^2, each = nbrn)
diagcx <- rep(L.rn^2, times = nbcn)
if ("Lee" %in% method) {
diagcr <- diagrx + diagcx
}
if ("Wood" %in% method) {
diagcr <- diagrx * diagcx
}
if (!("Lee" %in% method) & !("Wood" %in% method)) {
stop("Invalid setting of method argument")
}
BcrZLi <- BcrZ %*% diag(1/sqrt(diagcr))
if ("include" %in% eigenvalues) {
BcrZmat.df <- as.data.frame(BcrZLi)
BcrZmat <- BcrZLi
}
else {
BcrZmat.df <- as.data.frame(BcrZ)
BcrZmat <- BcrZ
}
BcrZmat.df$TP.CxR <- C.R
tracelist <- list()
for (i in 1:diff.c) {
nm <- paste0("Xc", i, ":Zr")
tempmat <- (BcX[col.match, i] %x% matrix(rep(1, nbr),
nrow = 1)) * BrZmat[row.match, ]
if ("include" %in% eigenvalues)
tempmatsc <- tempmat
else tempmatsc <- tempmat * (rep(1, nv) %*% matrix((1/diagr),
nrow = 1))
tracelist[nm] <- sum(tempmatsc * tempmat)
}
for (i in 1:diff.r) {
nm <- paste0("Zc:Xr", i)
tempmat <- BcZmat[col.match, ] * (matrix(rep(1, nbc),
nrow = 1) %x% BrX[row.match, i])
if ("include" %in% eigenvalues)
tempmatsc <- tempmat
else tempmatsc <- tempmat * (rep(1, nv) %*% matrix((1/diagc),
nrow = 1))
tracelist[nm] <- sum(tempmatsc * tempmat)
}
if ("include" %in% eigenvalues)
tracelist["Zc:Zr"] <- sum(BcrZmat * BcrZmat)
else {
tempmatsc <- BcrZmat * (rep(1, nv) %*% matrix((1/diagcr),
nrow = 1))
tracelist["Zc:Zr"] <- sum(tempmatsc * BcrZmat)
}
# outdata <- as.data.frame(data)
outdata <- data.frame(TP.col=columncoordinates)
outdata$TP.row <- rowcoordinates
outdata$TP.CxR <- C.R
BcrX1 <- BcX[col.match, ] %x% matrix(rep(1, diff.r), nrow = 1)
BcrX2 <- matrix(rep(1, diff.c), nrow = 1) %x% BrX[row.match,
]
BcrX <- BcrX1 * BcrX2
fixed <- list()
fixed$col <- data.frame(row.names = C.R)
for (i in 1:diff.c) {
c.fixed <- paste("TP.C", ".", i, sep = "")
outdata[c.fixed] <- BcX[col.match, i]
fixed$col[c.fixed] <- BcX[col.match, i]
}
fixed$row <- data.frame(row.names = C.R)
for (i in 1:diff.r) {
r.fixed <- paste("TP.R", ".", i, sep = "")
outdata[r.fixed] <- BrX[row.match, i]
fixed$row[r.fixed] <- BrX[row.match, i]
}
ncolX <- diff.c * diff.r
fixed$int <- data.frame(row.names = C.R)
for (i in 1:ncolX) {
cr.fixed <- paste("TP.CR", ".", i, sep = "")
outdata[cr.fixed] <- BcrX[, i]
fixed$int[cr.fixed] <- BcrX[, i]
}
if (!missing(stub)) {
cname <- paste0("BcZ", stub, ".df")
rname <- paste0("BrZ", stub, ".df")
crname <- paste0("BcrZ", stub, ".df")
}
else {
cname <- "BcZ.df"
rname <- "BrZ.df"
crname <- "BcrZ.df"
}
mbftext <- paste0("list(TP.col=list(key=c(\"TP.col\",\"TP.col\"),cov=\"",
cname, "\"),")
mbftext <- paste0(mbftext, "TP.row=list(key=c(\"TP.row\",\"TP.row\"),cov=\"",
rname, "\"),")
mbftext <- paste0(mbftext, "TP.CxR=list(key=c(\"TP.CxR\",\"TP.CxR\"),cov=\"",
crname, "\"))")
mbflist <- eval(parse(text = mbftext))
if ("grp" %in% asreml) {
grp <- list()
listnames <- list()
start <- length(outdata)
start0 <- start
scale <- 1
j <- 1
for (i in 1:diff.c) {
nm0 <- paste0(names(fixed$col[i]), "_frow")
listnames[j] <- nm0
for (k in 1:nbr) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * fixed$col[[i]] * BrZmat[row.match,
k]
}
grp[[j]] <- seq(from = start + 1, to = start + nbr,
by = 1)
start <- start + nbr
j <- j + 1
}
for (i in 1:diff.r) {
nm0 <- paste0(names(fixed$row[i]), "_fcol")
listnames[j] <- nm0
for (k in 1:nbc) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * fixed$row[[i]] * BcZmat[col.match,
k]
}
grp[[j]] <- seq(from = start + 1, to = start + nbc,
by = 1)
start <- start + nbc
j <- j + 1
}
m <- 0
nm0 <- "TP_fcol_frow"
listnames[j] <- nm0
for (k in 1:(nbrn * nbcn)) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * BcrZmat[, k]
}
grp[[j]] <- seq(from = start + 1, to = start + (nbcn *
nbrn), by = 1)
end <- start + (nbcn * nbrn)
j <- j + 1
listnames[j] <- "All"
grp[[j]] <- seq(from = start0 + 1, to = end, by = 1)
grp <- structure(grp, names = listnames)
}
if ("sepgrp" %in% asreml) {
grp <- list()
listnames <- list()
start <- length(outdata)
nm0 <- "TP_C"
listnames[1] <- nm0
for (i in 1:diff.c) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- fixed$col[[i]]
}
grp[[1]] <- seq(from = start + 1, to = start + diff.c,
by = 1)
start <- start + diff.c
nm0 <- "TP_R"
listnames[2] <- nm0
for (i in 1:diff.r) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- fixed$row[[i]]
}
grp[[2]] <- seq(from = start + 1, to = start + diff.r,
by = 1)
start <- start + diff.r
nm0 <- "TP_fcol"
listnames[3] <- nm0
for (k in 1:nbc) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BcZmat[col.match, k]
}
grp[[3]] <- seq(from = start + 1, to = start + nbc, by = 1)
start <- start + nbc
nm0 <- "TP_frow"
listnames[4] <- nm0
for (k in 1:nbr) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BrZmat[row.match, k]
}
grp[[4]] <- seq(from = start + 1, to = start + nbr, by = 1)
start <- start + nbr
grp <- structure(grp, names = listnames)
nm0 <- "TP_fcol_frow"
listnames[5] <- nm0
for (k in 1:(nbrn * nbcn)) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BcrZmat[, k]
}
grp[[5]] <- seq(from = start + 1, to = start + (nbcn *
nbrn), by = 1)
grp <- structure(grp, names = listnames)
}
if ("own" %in% asreml) {
grp <- list()
listnames <- list()
listnames[1] <- "All"
start <- length(outdata)
nm0 <- "Xc_Zr"
Xc_Zr <- (BcX[col.match, ] %x% matrix(rep(1, nbr), nrow = 1)) *
(matrix(rep(1, diff.c), nrow = 1) %x% BrZmat[row.match,
])
nXc_Zr <- ncol(Xc_Zr)
for (i in 1:nXc_Zr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Xc_Zr[, i]
}
nm0 <- "Zc_Xr"
Zc_Xr <- (BcZmat[col.match, ] %x% matrix(rep(1, diff.r),
nrow = 1)) * (matrix(rep(1, nbc), nrow = 1) %x% BrX[row.match,
])
nZc_Xr <- ncol(Zc_Xr)
for (i in 1:nZc_Xr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Zc_Xr[, i]
}
nm0 <- "Zc_Zr"
Zc_Zr <- BcrZmat
nZc_Zr <- ncol(Zc_Zr)
for (i in 1:nZc_Zr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Zc_Zr[, i]
}
grp[[1]] <- seq(from = start + 1, to = start + nXc_Zr +
nZc_Xr + nZc_Zr, by = 1)
grp <- structure(grp, names = listnames)
}
res <- list()
res$data <- outdata
res$mbflist <- mbflist
res[["BcZ.df"]] <- BcZmat.df
res[["BrZ.df"]] <- BrZmat.df
res[["BcrZ.df"]] <- BcrZmat.df
res[["All"]] <- as.matrix(outdata[,grp$All])
res$dim <- c(diff.c = diff.c, nbc = nbc, nbcn = nbcn, diff.r = diff.r,
nbr = nbr, nbrn = nbrn)
res$trace <- tracelist
if ("grp" %in% asreml)
res$grp <- grp
if ("sepgrp" %in% asreml)
res$grp <- grp
if ("own" %in% asreml)
res$grp <- grp
if ("mbf" %in% asreml)
res$grp <- NULL
if (!("include" %in% eigenvalues))
res$eigen <- list(diagc = diagc, diagr = diagr, diagcr = diagcr)
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.