#' This is part of the companion code to the post
#' "Representation learning with MMD-VAE"
#' on the TensorFlow for R blog.
#'
#' https://blogs.rstudio.com/tensorflow/posts/2018-10-22-mmd-vae/
library(keras)
use_implementation("tensorflow")
library(tensorflow)
tfe_enable_eager_execution(device_policy = "silent")
library(tfdatasets)
library(dplyr)
library(ggplot2)
library(glue)
# Setup and preprocessing -------------------------------------------------
fashion <- dataset_fashion_mnist()
c(train_images, train_labels) %<-% fashion$train
c(test_images, test_labels) %<-% fashion$test
train_x <-
train_images %>% `/`(255) %>% k_reshape(c(60000, 28, 28, 1))
test_x <-
test_images %>% `/`(255) %>% k_reshape(c(10000, 28, 28, 1))
class_names = c('T-shirt/top',
'Trouser',
'Pullover',
'Dress',
'Coat',
'Sandal',
'Shirt',
'Sneaker',
'Bag',
'Ankle boot')
buffer_size <- 60000
batch_size <- 100
batches_per_epoch <- buffer_size / batch_size
train_dataset <- tensor_slices_dataset(train_x) %>%
dataset_shuffle(buffer_size) %>%
dataset_batch(batch_size)
test_dataset <- tensor_slices_dataset(test_x) %>%
dataset_batch(10000)
# Model -------------------------------------------------------------------
latent_dim <- 2
encoder_model <- function(name = NULL) {
keras_model_custom(name = name, function(self) {
self$conv1 <-
layer_conv_2d(
filters = 32,
kernel_size = 3,
strides = 2,
activation = "relu"
)
self$conv2 <-
layer_conv_2d(
filters = 64,
kernel_size = 3,
strides = 2,
activation = "relu"
)
self$flatten <- layer_flatten()
self$dense <- layer_dense(units = latent_dim)
function (x, mask = NULL) {
x %>%
self$conv1() %>%
self$conv2() %>%
self$flatten() %>%
self$dense()
}
})
}
decoder_model <- function(name = NULL) {
keras_model_custom(name = name, function(self) {
self$dense <- layer_dense(units = 7 * 7 * 32, activation = "relu")
self$reshape <- layer_reshape(target_shape = c(7, 7, 32))
self$deconv1 <-
layer_conv_2d_transpose(
filters = 64,
kernel_size = 3,
strides = 2,
padding = "same",
activation = "relu"
)
self$deconv2 <-
layer_conv_2d_transpose(
filters = 32,
kernel_size = 3,
strides = 2,
padding = "same",
activation = "relu"
)
self$deconv3 <-
layer_conv_2d_transpose(
filters = 1,
kernel_size = 3,
strides = 1,
padding = "same",
activation = "sigmoid"
)
function (x, mask = NULL) {
x %>%
self$dense() %>%
self$reshape() %>%
self$deconv1() %>%
self$deconv2() %>%
self$deconv3()
}
})
}
# Loss and optimizer ------------------------------------------------------
optimizer <- tf$train$AdamOptimizer(1e-4)
compute_kernel <- function(x, y) {
x_size <- k_shape(x)[1]
y_size <- k_shape(y)[1]
dim <- k_shape(x)[2]
tiled_x <- k_tile(k_reshape(x, k_stack(list(x_size, 1, dim))), k_stack(list(1, y_size, 1)))
tiled_y <- k_tile(k_reshape(y, k_stack(list(1, y_size, dim))), k_stack(list(x_size, 1, 1)))
k_exp(-k_mean(k_square(tiled_x - tiled_y), axis = 3) / k_cast(dim, tf$float64))
}
compute_mmd <- function(x, y, sigma_sqr = 1) {
x_kernel <- compute_kernel(x, x)
y_kernel <- compute_kernel(y, y)
xy_kernel <- compute_kernel(x, y)
k_mean(x_kernel) + k_mean(y_kernel) - 2 * k_mean(xy_kernel)
}
# Output utilities --------------------------------------------------------
num_examples_to_generate <- 64
random_vector_for_generation <-
k_random_normal(shape = list(num_examples_to_generate, latent_dim),
dtype = tf$float64)
generate_random_clothes <- function(epoch) {
predictions <-
decoder(random_vector_for_generation)
png(paste0("mmd_clothes_epoch_", epoch, ".png"))
par(mfcol = c(8, 8))
par(mar = c(0.5, 0.5, 0.5, 0.5),
xaxs = 'i',
yaxs = 'i')
for (i in 1:64) {
img <- predictions[i, , , 1]
img <- t(apply(img, 2, rev))
image(
1:28,
1:28,
img * 127.5 + 127.5,
col = gray((0:255) / 255),
xaxt = 'n',
yaxt = 'n'
)
}
dev.off()
}
show_latent_space <- function(epoch) {
iter <- make_iterator_one_shot(test_dataset)
x <- iterator_get_next(iter)
x_test_encoded <- encoder(x)
x_test_encoded %>%
as.matrix() %>%
as.data.frame() %>%
mutate(class = class_names[fashion$test$y + 1]) %>%
ggplot(aes(x = V1, y = V2, colour = class)) + geom_point() +
theme(aspect.ratio = 1) +
theme(plot.margin = unit(c(0, 0, 0, 0), "null")) +
theme(panel.spacing = unit(c(0, 0, 0, 0), "null"))
ggsave(
paste0("mmd_latentspace_epoch_", epoch, ".png"),
width = 10,
height = 10,
units = "cm"
)
}
show_grid <- function(epoch) {
png(paste0("mmd_grid_epoch_", epoch, ".png"))
par(mar = c(0.5, 0.5, 0.5, 0.5),
xaxs = 'i',
yaxs = 'i')
n <- 16
img_size <- 28
grid_x <- seq(-4, 4, length.out = n)
grid_y <- seq(-4, 4, length.out = n)
rows <- NULL
for (i in 1:length(grid_x)) {
column <- NULL
for (j in 1:length(grid_y)) {
z_sample <- matrix(c(grid_x[i], grid_y[j]), ncol = 2)
column <-
rbind(column,
(decoder(z_sample) %>% as.numeric()) %>% matrix(ncol = img_size))
}
rows <- cbind(rows, column)
}
rows %>% as.raster() %>% plot()
dev.off()
}
# Training loop -----------------------------------------------------------
num_epochs <- 50
encoder <- encoder_model()
decoder <- decoder_model()
checkpoint_dir <- "./checkpoints_fashion_cvae"
checkpoint_prefix <- file.path(checkpoint_dir, "ckpt")
checkpoint <-
tf$train$Checkpoint(optimizer = optimizer,
encoder = encoder,
decoder = decoder)
generate_random_clothes(0)
show_latent_space(0)
show_grid(0)
for (epoch in seq_len(num_epochs)) {
iter <- make_iterator_one_shot(train_dataset)
total_loss <- 0
loss_nll_total <- 0
loss_mmd_total <- 0
until_out_of_range({
x <- iterator_get_next(iter)
with(tf$GradientTape(persistent = TRUE) %as% tape, {
mean <- encoder(x)
preds <- decoder(mean)
true_samples <- k_random_normal(shape = c(batch_size, latent_dim), dtype = tf$float64)
loss_mmd <- compute_mmd(true_samples, mean)
loss_nll <- k_mean(k_square(x - preds))
loss <- loss_nll + loss_mmd
})
total_loss <- total_loss + loss
loss_mmd_total <- loss_mmd + loss_mmd_total
loss_nll_total <- loss_nll + loss_nll_total
encoder_gradients <- tape$gradient(loss, encoder$variables)
decoder_gradients <- tape$gradient(loss, decoder$variables)
optimizer$apply_gradients(purrr::transpose(list(
encoder_gradients, encoder$variables
)),
global_step = tf$train$get_or_create_global_step())
optimizer$apply_gradients(purrr::transpose(list(
decoder_gradients, decoder$variables
)),
global_step = tf$train$get_or_create_global_step())
})
checkpoint$save(file_prefix = checkpoint_prefix)
cat(
glue(
"Losses (epoch): {epoch}:",
" {(as.numeric(loss_nll_total)/batches_per_epoch) %>% round(4)} loss_nll_total,",
" {(as.numeric(loss_mmd_total)/batches_per_epoch) %>% round(4)} loss_mmd_total,",
" {(as.numeric(total_loss)/batches_per_epoch) %>% round(4)} total"
),
"\n"
)
if (epoch %% 10 == 0) {
generate_random_clothes(epoch)
show_latent_space(epoch)
show_grid(epoch)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.