find_cluster_markers | R Documentation |
This function uses Seurat's marker finding capability to find DEGs of each cluster
find_cluster_markers(
so_clone,
type,
logfc.threshold = 0.2,
min.pct = 0,
only.pos = TRUE,
n_markers = 5,
value = "log2_expr",
text_size = 16,
title_size = 18,
legend_size_pt = 4,
p_val_thresh = 0.05,
bin = TRUE,
plot_directory = None
)
so_clone |
seurat object with 'clone' (SlideCNA-designated cluster) and bin annotations |
type |
character string that is 'all' if using malignant and normal clusters and 'malig' if just using malignant clusters |
logfc.threshold |
numeric float that is seurat parameter, representing the minimum log2 fold change for DEGs to be significant |
min.pct |
numeric Seurat function parameter |
only.pos |
TRUE if only using DEGs with positive log2 fold change |
n_markers |
integer of number of top DEGs to plot/use |
value |
expression value of DEGs; one of ("log2_expr", "avg_expr", and "avg_log2FC") for log2-normalized aerage epxression, average expression, or log2 fold change |
text_size |
Ggplot2 text size |
title_size |
Ggplot2 title size |
legend_size_pt |
Ggplot2 legend_size_pt |
p_val_thresh |
value for p value cutoff for DEGs |
bin |
TRUE if using binned beads |
plot_directory |
output plot directory path |
A list object with cluster marker information markers_clone = data.table of all cluster markers top_markers_clone = data.table of just top cluster markers top_clone_vis = data.frame formatted for plot visualization of top cluster markers
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.