R/preciseTAD.R

Defines functions preciseTAD

Documented in preciseTAD

#' Precise TAD boundary prediction at base-level resolution using density-based
#' spatial clustering and partitioning techniques
#'
#' @param genomicElements.GR \code{GRangesList} object containing GRanges from
#' each ChIP-seq BED file that was used to train a predictive model (can be
#' obtained using the \code{\link{bedToGRangesList}}). Required.
#' @param featureType Controls how the feature space is constructed (one of
#' either "binary", "oc", "op", "signal, or "distance" (log2- transformed).
#' Default and recommended: "distance".
#' @param CHR Controls which chromosome to predict boundaries on at base-level
#' resolution, e.g., CHR22. Required.
#' @param chromCoords List containing the starting bp coordinate and ending bp
#' coordinate that defines the region of the linear genome to make predictions
#' on. If chromCoords is not specified, then predictions will be made on the
#' entire chromosome. Default is NULL.
#' @param tadModel Model object used to obtain predicted probabilities at
#' base-level resolution (examples include \code{gbm}, \code{glmnet},
#' \code{svm}, \code{glm}, etc). For a random forest model, can be obtained
#' using \code{preciseTAD::randomForest}). Required.
#' @param threshold Bases with predicted probabilities that are greater
#' than or equal to this value are labeled as potential TAD boundaries. Values
#' in the range of .95-1.0 are suggested. Default is 1. To explore how
#' selection of the `threshold` parameter affects the results, it is recommended
#' to rerun the function with a different threshold, e.g., 0.99, and compare the
#' results of Normalized Enrichment test (see `DBSCAN_params` and the 
#' `preciseTADparams` slot).
#' @param verbose Option to print progress. Default is TRUE.
#' @param parallel Option to parallelise the process for obtaining predicted
#' probabilities. Must be number to indicate the number of cores to use in
#' parallel. Default is NULL.
#' @param DBSCAN_params Parameters passed to \code{\link{dbscan}} in list form
#' containing 1) eps and 2) MinPts. If a vector of different values is passed to
#' either or both eps and MinPts, then each combination of these parameters is
#' evaluated to maximize normalized enrichment (NE) is the provided genomic 
#' annotations. Normalized Enrichment is calculated as the number of genomic 
#' annotations that overlap with flanked predicted boundary points (see the slope 
#' parameter) divided by the total number of predicted boundaries, averaged for 
#' all genomic annotations. Parameters yielding  maximum NE score are automatically 
#' selected for the final prediction. It is advisable to explore results 
#' of the NE test, available in the `preciseTADparams` slot of the returned 
#' object (NEmean - mean normalized enrichment, larger the better; k - number 
#' of PTBRs), to, potentially, find eps and MinPts parameters providing 
#' the number of PTBRs and the NE score better agreeing with the number
#' of boundaries used for training. Default: list(30000, 100). Required.
#' @param slope Controls how much to flank the predicted TAD boundary points for
#' calculating normalized enrichment. Default: 5000 bases. Required.
#' @param genome version of the human genome assembly. Used to filter out
#' bases overlapping centromeric regions. Accepted values - hg19 or 
#' hg38. Default: hg19
#' @param BaseProbs Option to include the vector of probabilities for each 
#' base-level coordinate. Recommended to be used only when chromCoords is 
#' specified. Default: FALSE
#' @param savetobed If true, preciseTAD regions (PTBRs) and preciseTAD points
#' (PTBPs) will be saved as BED-like files into the current folder 
#' (as.data.frame(GRanges)). File name convention: 
#' <PTBRs/PTBPs>_<threshold>_<MinPts>_<eps>.bed, e.g., PTBR_1_3_30000.bed. 
#' If multiple DBSCAN_params are specified, each result will
#' be saved in its own file. Default: FALSE
#'
#' @return A list containing 4 elements including:
#' 1) data frame with average (and standard deviation) normalized enrichment 
#' (NE) values for each combination of t and eps (only if multiple values are 
#' provided for at least paramenter; all subsequent summaries are applied to 
#' optimal combination of (t, eps)),
#' 2) the genomic coordinates spanning each preciseTAD predicted region (PTBR),
#' 3) the genomic coordinates of preciseTAD predicted boundaries points (PTBP),
#' 4) a named list including summary statistics of the following:
#' PTBRWidth - PTBR width, PTBRCoverage - the proportion of bases within a PTBR
#' with probabilities that equal to or exceed the threshold (t=1 by default),
#' DistanceBetweenPTBR - the genomic distance between the end of the previous
#' PTBR and the start of the subsequent PTBR, NumSubRegions - the number of
#' the subregions in each PTBR cluster, SubRegionWidth - the width of
#' the subregion forming each PTBR, DistBetweenSubRegions -
#' the genomic distance between the end of the previous PTBR-specific subregion
#' and the start of the subsequent PTBR-specific subregion, NormilizedEnrichment
#' - the normalized enrichment of the genomic annotations used in the model 
#' around flanked PTBPs, and BaseProbs - a numeric vector of probabilities for 
#' each corresponding base coordinate.
#' @export
#'
#' @importFrom pROC roc
#' @importFrom pROC coords
#' @importFrom stats predict
#' @importFrom stats hclust
#' @importFrom stats cutree
#' @importFrom stats dist
#' @importFrom stats setNames
#' @importFrom dbscan dbscan
#' @importFrom S4Vectors subjectHits
#' @importFrom utils write.table
#' @import pbapply parallel doSNOW foreach cluster IRanges GenomicRanges rCGH
#'
#' @examples
#' # Read in ARROWHEAD-called TADs at 5kb
#' data(arrowhead_gm12878_5kb)
#'
#' # Extract unique boundaries
#' bounds.GR <- extractBoundaries(domains.mat = arrowhead_gm12878_5kb,
#'                                filter = FALSE,
#'                                CHR = c("CHR21", "CHR22"),
#'                                resolution = 5000)
#'
#' # Read in GRangesList of 26 TFBS and filter to include only CTCF, RAD21,
#' #SMC3, and ZNF143
#' data(tfbsList)
#'
#' tfbsList_filt <- tfbsList[which(names(tfbsList) %in%
#'                                                  c("Gm12878-Ctcf-Broad",
#'                                                    "Gm12878-Rad21-Haib",
#'                                                    "Gm12878-Smc3-Sydh",
#'                                                    "Gm12878-Znf143-Sydh"))]
#'
#' # Create the binned data matrix for CHR1 (training) and CHR22 (testing)
#' # using 5 kb binning, distance-type predictors from 4 TFBS from
#' # the GM12878 cell line, and random under-sampling
#' set.seed(123)
#' tadData <- createTADdata(bounds.GR = bounds.GR,
#'                          resolution = 5000,
#'                          genomicElements.GR = tfbsList_filt,
#'                          featureType = "distance",
#'                          resampling = "rus",
#'                          trainCHR = "CHR21",
#'                          predictCHR = "CHR22")
#'
#' # Perform random forest using TADrandomForest by tuning mtry over 10 values
#' # using 3-fold CV
#' set.seed(123)
#' tadModel <- TADrandomForest(trainData = tadData[[1]],
#'                             testData = tadData[[2]],
#'                             tuneParams = list(mtry = 2,
#'                                             ntree = 500,
#'                                             nodesize = 1),
#'                             cvFolds = 3,
#'                             cvMetric = "Accuracy",
#'                             verbose = TRUE,
#'                             model = TRUE,
#'                             importances = TRUE,
#'                             impMeasure = "MDA",
#'                             performances = TRUE)
#'
#' # Apply preciseTAD on a specific 2mb section of CHR22:17000000-18000000
#' set.seed(123)
#' pt <- preciseTAD(genomicElements.GR = tfbsList_filt,
#'                  featureType = "distance",
#'                  CHR = "CHR22",
#'                  chromCoords = list(17000000, 18000000),
#'                  tadModel = tadModel[[1]],
#'                  threshold = 1.0,
#'                  verbose = TRUE,
#'                  parallel = NULL,
#'                  DBSCAN_params = list(c(1000, 10000, 30000), c(10, 100, 1000)),
#'                  slope = 5000,
#'                  genome = "hg19",
#'                  BaseProbs = FALSE,
#'                  savetobed = FALSE)
preciseTAD = function(genomicElements.GR, featureType = "distance", CHR,
                      chromCoords = NULL, tadModel, threshold = 1,
                      verbose = TRUE, parallel = NULL, DBSCAN_params = list(30000, 100),
                      slope = 5000, genome = "hg19", BaseProbs = FALSE, savetobed = FALSE) {

    #ESTABLISHING CHROMOSOME-SPECIFIC SEQINFO#

    #LOADING CHROMOSOME LENGTHS#
    if (genome %in% c("hg19", "hg38")) {
        ifelse(genome == "hg19", centromeres <- rCGH::hg19, centromeres <- rCGH::hg38)
        centromeres$chrom <- paste0("CHR", centromeres$chrom)
    } else {
        print("Wrong genome version. Use hg19 or hg38")
        return(NULL)
    }

    if(is.list(chromCoords)) {
        seqDataTest <- c(chromCoords[[1]]:chromCoords[[2]])
        if("TRUE" %in% table(seqDataTest %in% c(centromeres$centromerStart[centromeres$chrom == CHR]:centromeres$centromerEnd[centromeres$chrom == CHR]))) {
            centromereTestStart <- centromeres$centromerStart[centromeres$chrom==CHR]
            centromereTestEnd <- centromeres$centromerEnd[centromeres$chrom==CHR]
            seqDataTest <- seqDataTest[-which(seqDataTest %in% c(centromereTestStart:centromereTestEnd))]
        }
    } else {
        seqLengthTest <- centromeres$length[centromeres$chrom == CHR]
        seqDataTest <- seq_along(0:seqLengthTest)
        centromereTestStart <- centromeres$centromerStart[centromeres$chrom == CHR]
        centromereTestEnd <- centromeres$centromerEnd[centromeres$chrom == CHR]
        seqDataTest <- seqDataTest[-which(seqDataTest %in% c(centromereTestStart:centromereTestEnd))]
    }

    #CREATING BP RESOLUTION TEST DATA#
    test_data <- matrix(nrow = length(seqDataTest),
                        ncol = length(genomicElements.GR),
                        dimnames = list(NULL,names(genomicElements.GR)))
    # Split in 10M chunks
    if(verbose==TRUE){print(paste0("Establishing bp resolution test data using a ", featureType, " type feature space"))}
    for(j in seq_len(length(genomicElements.GR))){
        p <-list()
        for(i in seq_len(length(split(GRanges(seqnames=tolower(CHR),
                                        IRanges(start=seqDataTest,
                                                end=seqDataTest)),
                                ceiling(seq_along(GRanges(seqnames=tolower(CHR),
                                                          IRanges(start=seqDataTest,
                                                                  end=seqDataTest)))/10000000))))){
            if(featureType=="distance"){
                p[[i]] <- log(distance_func(split(GRanges(seqnames=tolower(CHR),
                                                          IRanges(start=seqDataTest,
                                                                  end=seqDataTest)),
                                                  ceiling(seq_along(GRanges(seqnames=tolower(CHR),
                                                                            IRanges(start=seqDataTest,
                                                                                    end=seqDataTest)))/10000000))[[i]],
                                            genomicElements.GR[[j]]) + 1,
                              base = 2)
            }else if(featureType=="binary"){
                p[[i]] <- binary_func(split(GRanges(seqnames=tolower(CHR),
                                                    IRanges(start=seqDataTest,
                                                            end=seqDataTest)),
                                            ceiling(seq_along(GRanges(seqnames=tolower(CHR),
                                                                      IRanges(start=seqDataTest,
                                                                              end=seqDataTest)))/10000000))[[i]],
                                      genomicElements.GR[[j]])
            }else if(featureType=="oc"){
                p[[i]] <- count_func(split(GRanges(seqnames=tolower(CHR),
                                                   IRanges(start=seqDataTest,
                                                           end=seqDataTest)),
                                           ceiling(seq_along(GRanges(seqnames=tolower(CHR),
                                                                     IRanges(start=seqDataTest,
                                                                             end=seqDataTest)))/10000000))[[i]],
                                     genomicElements.GR[[j]])
            }else{
                p[[i]] <- percent_func(split(GRanges(seqnames=tolower(CHR),
                                                     IRanges(start=seqDataTest,
                                                             end=seqDataTest)),
                                             ceiling(seq_along(GRanges(seqnames=tolower(CHR),
                                                                       IRanges(start=seqDataTest,
                                                                               end=seqDataTest)))/10000000))[[i]],
                                       genomicElements.GR[[j]])
            }
        }
        p <- unlist(p)
        test_data[,j] <- p
    }
    #rm("p", "g")

    #PREDICTING AT BP RESOLUTION #
    if (verbose == TRUE) { print("Establishing probability vector") }

    if(!is.null(parallel)){
        parallel_predictions<-function(fit, testing, c, n){
            cl<-makeCluster(c)
            registerDoSNOW(cl)
            split_testing<-sort(rank(seq_len(nrow(testing))) %% n)
            predictions<-foreach(i=unique(split_testing),
                                 .combine=c,
                                 .packages=c("caret")) %dopar% {
                                     as.numeric(predict(fit, newdata=testing[split_testing==i, ], type="prob")[, "Yes"])
                                 }
            stopCluster(cl)
            predictions
        }
        predictions <- parallel_predictions(fit=tadModel, testing=test_data, c=parallel, n=parallel)
    } else {
        if(!is.list(chromCoords)){
            array_split <- function(data, number_of_chunks){
                rowIdx <- seq_len(nrow(data))
                lapply(split(rowIdx, cut(rowIdx, pretty(rowIdx, number_of_chunks))), function(x) data[x, ])
            }
            split_ind <- as.integer(nrow(test_data)/10000000) + 1
            test_data <- array_split(test_data, split_ind)
            predictions <- list()
            for(i in seq_len(length(test_data))){
                predictions[[i]] <- predict(tadModel,newdata=test_data[[i]],type="prob")[,"Yes"]
            }
            predictions <- unlist(predictions)
        }else{
            predictions <- predict(tadModel,newdata=test_data,type="prob")[,"Yes"]
        }
    }

    #DETERMING OPTIMAL COMBINATION OF (MinPts, eps) #
    if (verbose == TRUE) {
        print("Determining optimal combination of epsilon neighborhood (eps) and minimum number of points (MinPts)")
    }
    
    ptMat <- expand.grid(DBSCAN_params[[2]], DBSCAN_params[[1]])
    colnames(ptMat) <- c("MinPts", "eps")
    ptMat$NEmean <- NA
    ptMat$k <- NA
    
    for(i in seq_len(nrow(ptMat))){
        if (verbose == TRUE) {
            print(paste0("Initializing DBSCAN for MinPts=",
                         ptMat$MinPts[i],
                         " and eps=",
                         ptMat$eps[i]))
        }
        
        res <- dbscan::dbscan(as.matrix(seqDataTest[which(predictions >= threshold )]), 
                              eps = ptMat$eps[i], 
                              minPts = ptMat$MinPts[i])
        if (0 %in% unique(res$cluster)) {
            k = length(unique(res$cluster)) - 1
        } else {
            k = length(unique(res$cluster))
        }
        
        if (verbose == TRUE) {
            print(paste0("    preciseTAD identified ", k, " PTBRs"))
            print(paste0("    Establishing PTBPs"))
        }
        
        # If at least 1 cluster is found
        if (k >= 1) {
            # Lists to store PTBPs and PTBRs
            medoids <- numeric()
            grlist <- GRangesList()
            # Process each cluster
            for(l in seq_len(k)){
                if(verbose == TRUE){print(paste0("        Cluster ", l, " out of ", k))}
                # Get PTBRs                
                bp <- seqDataTest[which(predictions >= threshold)][which(res$cluster==l)]
                grlist[[l]] <- GRanges(seqnames = tolower(CHR),
                                       IRanges(start=min(bp),
                                               end=max(bp)))
                # Find PTBPs
                cc <- pam(x = as.matrix(bp),
                          k = 1,
                          diss = FALSE,
                          metric = "euclidean",
                          medoids = NULL,
                          stand = FALSE,
                          cluster.only = FALSE,
                          do.swap = TRUE,
                          keep.diss = FALSE,
                          trace.lev = 0)
                medoids[l] <- cc$medoids[1]
                
            }
            # Make one GRanges with PTBRs
            grlist <- unlist(grlist)
            # Make one GRanges with PTBPs
            predBound_gr <- GRanges(seqnames=tolower(CHR),
                                    IRanges(start=medoids,
                                            end=medoids))
            # Save the data, if savetobed is set
            if (savetobed) {
                # Save PTBRs
                fileNameOut <- paste0("PTBRs_", threshold, "_", ptMat$MinPts[i], "_", ptMat$eps[i], ".bed")
                write.table(as.data.frame(grlist), fileNameOut, sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
                # Save PTBPs
                fileNameOut <- paste0("PTBPs_", threshold, "_", ptMat$MinPts[i], "_", ptMat$eps[i], ".bed")
                write.table(as.data.frame(predBound_gr), fileNameOut, sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
            }
            # Calculate normalized enrichment
            NormilizedEnrichment <- length(unique(subjectHits(GenomicRanges::findOverlaps(GenomicRanges::flank(predBound_gr, width = slope,  both = TRUE), unlist(genomicElements.GR))))) / length(predBound_gr)
            # Save the results
            ptMat$NEmean[i] <- NormilizedEnrichment
            ptMat$k[i] <- k
        } else { # If no clusters found
            ptMat$NEmean[i] <- 0
            ptMat$k[i] <- 0
        }
        
    }
    
    if (verbose == TRUE) { 
        print(paste0("Optimal combination of MinPts and eps is = (",
                     ptMat$MinPts[which.max(ptMat$NEmean)], ", ",
                     ptMat$eps[which.max(ptMat$NEmean)], ")"))
    }
    
    DBSCAN_params[[2]] = ptMat$MinPts[which.max(ptMat$NEmean)]
    DBSCAN_params[[1]] = ptMat$eps[which.max(ptMat$NEmean)]

    #PERFORMING preciseTAD ON OPTIMAL (MinPts, eps)
    if (verbose == TRUE) {
        print(paste0("preciseTAD identified a total of ", 
                     length(diff(seqDataTest[which(predictions >= threshold)])), 
                     " base pairs whose predictive probability was equal to or exceeded a threshold of ",
                     threshold))
        
        print(paste0("Initializing DBSCAN for MinPts = ", DBSCAN_params[[2]], 
                     " and eps = ", DBSCAN_params[[1]]))
    }
    
    res <- dbscan::dbscan(as.matrix(seqDataTest[which(predictions >= threshold)]), 
                          eps = DBSCAN_params[[1]], 
                          minPts = DBSCAN_params[[2]])
    if (0 %in% unique(res$cluster)) {
        k = length(unique(res$cluster)) - 1
    } else {
        k = length(unique(res$cluster))
    }
    
    if (verbose == TRUE) {
        print(paste0("preciseTAD identified ", k, " PTBRs"))
        print(paste0("Establishing PTBPs"))
    }
    
    # If at least 1 cluster is found
    if (k >= 1) {
        medoids <- numeric()
        grlist <- GRangesList()
        numsubreg <- numeric()
        distbtwsubreg <- numeric()
        coverage <- numeric()
        widthsubreg <- numeric()
        for(i in seq_len(k)){
            if(verbose == TRUE){print(paste0("Cluster ", i, " out of ", k))}
            
            bp <- seqDataTest[which(predictions>=threshold)][which(res$cluster==i)]
            
            grlist[[i]] <- GRanges(seqnames = tolower(CHR),
                                   IRanges(start=min(bp),
                                           end=max(bp)))
            
            if(0 %in% unique(res$cluster)){
                coverage[i] <- as.vector(table(res$cluster))[-1][i]/(max(bp)-min(bp)+1)
            }else{
                coverage[i] <- as.vector(table(res$cluster))[i]/(max(bp)-min(bp)+1)
            }
            
            if(identical(diff(bp[-which(diff(bp)==1)]), integer(0))){
                numsubreg[i] <- 1
                distbtwsubreg <- c(distbtwsubreg, 0)
            }else{
                numsubreg[i] <- length(diff(bp)[-which(diff(bp)==1)])+1
                distbtwsubreg <- c(distbtwsubreg, diff(bp)[-which(diff(bp)==1)])
            }
            
            retain <- c(1,cumsum(ifelse(diff(bp) != 1, 1, 0)) + 1)
            
            widthsubreg <- c(widthsubreg, as.vector(table(retain)))
            
            c <- pam(x = as.matrix(bp),
                     k = 1,
                     diss = FALSE,
                     metric = "euclidean",
                     medoids = NULL,
                     stand = FALSE,
                     cluster.only = FALSE,
                     do.swap = TRUE,
                     keep.diss = FALSE,
                     trace.lev = 0)
            medoids[i] <- c$medoids[1]
            
        }
        
        grlist <- unlist(grlist)
        
        predBound_gr <- GRanges(seqnames=tolower(CHR),
                                IRanges(start=medoids,
                                        end=medoids))
        
        if(0 %in% unique(res$cluster)){res$cluster <- res$cluster[-which(res$cluster==0)]}
        
        if(BaseProbs==TRUE){
            if(is.list(chromCoords)){
                predictions = stats::setNames(predictions, as.character(seq.int(chromCoords[[1]], chromCoords[[2]])))
            }else{
                predictions = stats::setNames(predictions, as.character(seqDataTest))
            }
        }else{
            predictions = NA
        }
        
        bp_results <- list(preciseTADparams=ptMat,
                           PTBR=grlist,
                           PTBP=predBound_gr,
                           Summaries=list(PTBRWidth = data.frame(min=min(width(grlist)),
                                                                 max=max(width(grlist)),
                                                                 median=median(width(grlist)),
                                                                 iqr=IQR(width(grlist)),
                                                                 mean=mean(width(grlist)),
                                                                 sd=sd(width(grlist))),
                                          PTBRCoverage = data.frame(min=min(coverage),
                                                                    max=max(coverage),
                                                                    median=median(coverage),
                                                                    iqr=IQR(coverage),
                                                                    mean=mean(coverage),
                                                                    sd=sd(coverage)),
                                          DistanceBetweenPTBR = data.frame(min=min(start(grlist)[-1]-end(grlist)[-length(end(grlist))]),
                                                                           max=max(start(grlist)[-1]-end(grlist)[-length(end(grlist))]),
                                                                           median=median(start(grlist)[-1]-end(grlist)[-length(end(grlist))]),
                                                                           iqr=IQR(start(grlist)[-1]-end(grlist)[-length(end(grlist))]),
                                                                           mean=mean(start(grlist)[-1]-end(grlist)[-length(end(grlist))]),
                                                                           sd=sd(start(grlist)[-1]-end(grlist)[-length(end(grlist))])),
                                          NumSubRegions = data.frame(min=min(numsubreg),
                                                                     max=max(numsubreg),
                                                                     median=median(numsubreg),
                                                                     iqr=IQR(numsubreg),
                                                                     mean=mean(numsubreg),
                                                                     sd=sd(numsubreg)),
                                          SubRegionWidth = data.frame(min=min(widthsubreg),
                                                                      max=max(widthsubreg),
                                                                      median=median(widthsubreg),
                                                                      iqr=IQR(widthsubreg),
                                                                      mean=mean(widthsubreg),
                                                                      sd=sd(widthsubreg)),
                                          DistBetweenSubRegions = data.frame(min=min(distbtwsubreg),
                                                                             max=max(distbtwsubreg),
                                                                             median=median(distbtwsubreg),
                                                                             iqr=IQR(distbtwsubreg),
                                                                             mean=mean(distbtwsubreg),
                                                                             sd=sd(distbtwsubreg)),
                                          NormilizedEnrichment = length(unique(subjectHits(GenomicRanges::findOverlaps(GenomicRanges::flank(predBound_gr, width = slope,  both = TRUE), unlist(genomicElements.GR))))) / length(predBound_gr),
                                          BaseProbs = predictions))
        
    } else { # If no clusters found
        print("No clusters found. Check your data and parameters.")
        bp_results <- NULL
    }
    
    # Save the data, if savetobed is set
    if (savetobed & !is.null(bp_results)) {
        # Save PTBRs
        fileNameOut <- paste0("PTBRs_", threshold, "_", DBSCAN_params[[2]], "_", DBSCAN_params[[1]], ".bed")
        write.table(as.data.frame(grlist), fileNameOut, sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
        # Save PTBPs
        fileNameOut <- paste0("PTBPs_", threshold, "_", DBSCAN_params[[2]], "_", DBSCAN_params[[1]], ".bed")
        write.table(as.data.frame(predBound_gr), fileNameOut, sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
    }
    
    return(bp_results)
}
dozmorovlab/preciseTAD documentation built on April 26, 2022, 9:42 a.m.