#' Estimate Parameters From Real Datasets by BASiCS
#'
#' This function is used to estimate useful parameters from a real dataset by
#' using `BASiCSEstimate` function in Splatter package.
#'
#' @param ref_data A count matrix. Each row represents a gene and each column
#' represents a cell.
#' @param verbose Logical.
#' @param seed An integer of a random seed.
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @importFrom splatter BASiCSEstimate
#' @return A list contains the estimated parameters and the results of execution
#' detection.
#' @export
#'
#' @references
#' Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome biology, 2017, 18(1): 1-15. <https://doi.org/10.1186/s13059-017-1305-0>
#'
#' Bioconductor URL: <https://bioconductor.org/packages/release/bioc/html/splatter.html>
#'
#' Github URL: <https://github.com/Oshlack/splatter>
BASiCS_estimation <- function(ref_data,
verbose = FALSE,
other_prior = NULL,
seed
){
##############################################################################
#### Check ###
##############################################################################
if(!is.matrix(ref_data)){
ref_data <- as.matrix(ref_data)
}
other_prior[["counts"]] <- ref_data
other_prior[["params"]] <- splatter::newBASiCSParams()
if(is.null(other_prior[["dilution.factor"]]) & is.null(other_prior[["batch.condition"]])){
stop("At least one of spike.info and batch must be provided.")
}
if(!is.null(other_prior[["dilution.factor"]]) & !is.null(other_prior[["volume"]])){
ERCC_index <- grep(rownames(ref_data), pattern = "^ERCC")
ERCC_counts <- ref_data[ERCC_index, ]
## cell filter
cell_remove_index <- colSums(ERCC_counts) == 0
if(any(cell_remove_index)){
warning(paste0("These cells have zero counts in spike-in genes and will be moved: ", paste0(colnames(ERCC_counts)[cell_remove_index], collapse = ', ')))
}
spikeData <- ref_data[grep(rownames(ref_data), pattern = "^ERCC"), ]
## spike-in genes filter
spike_in_remove_index <- rowSums(ERCC_counts) == 0
if(any(spike_in_remove_index)){
warning(paste0("These spike-in genes have zero counts in all cells and will be moved: ", paste0(rownames(ERCC_counts)[spike_in_remove_index], collapse = ', ')))
}
spikeData <- spikeData[!spike_in_remove_index, !cell_remove_index]
## molecules
concentration <- simmethods::ERCC_info$con_Mix1_attomoles_ul
spikeInfo <- data.frame(Name = simmethods::ERCC_info$ERCC_id,
Input = concentration*10^-18*6.022*10^23*other_prior[["volume"]]/other_prior[["dilution.factor"]],
row.names = simmethods::ERCC_info$ERCC_id)
spikeInfo <- spikeInfo[rownames(spikeData), ]
other_prior[["spike.info"]] <- spikeInfo
other_prior[["counts"]] <- ref_data[, !cell_remove_index]
}
if(!is.null(other_prior[["batch.condition"]])){
other_prior[["batch"]] <- other_prior[["batch.condition"]]
}
estimate_formals <- simutils::change_parameters(function_expr = "splatter::BASiCSEstimate",
other_prior = other_prior,
step = "estimation")
##############################################################################
#### Estimation ###
##############################################################################
if(verbose){
message("Estimating parameters using BASiCS")
}
# Seed
set.seed(seed)
# Estimation
estimate_detection <- peakRAM::peakRAM(
estimate_result <- splatter::BASiCSEstimate(counts = estimate_formals[["counts"]],
batch = estimate_formals[["batch"]],
spike.info = estimate_formals[["spike.info"]],
n = estimate_formals[["n"]],
thin = estimate_formals[["thin"]],
burn = estimate_formals[["burn"]],
regression = estimate_formals[["regression"]],
params = estimate_formals[["params"]],
verbose = estimate_formals[["verbose"]],
progress = estimate_formals[["progress"]])
)
##############################################################################
#### Ouput ###
##############################################################################
estimate_output <- list(estimate_result = estimate_result,
estimate_detection = estimate_detection)
return(estimate_output)
}
#' Simulate Datasets by BASiCS
#'
#' This function is used to simulate datasets from learned parameters by `BASiCSSimulate`
#' function in Splatter package.
#'
#' @param parameters A object generated by [splatter::BASiCSEstimate()]
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @param return_format A character. Alternative choices: list, SingleCellExperiment,
#' Seurat, h5ad. If you select `h5ad`, you will get a path where the .h5ad file saves to.
#' @param verbose Logical. Whether to return messages or not.
#' @param seed A random seed.
#' @importFrom splatter BASiCSSimulate
#' @export
#'
#' @references
#' Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome biology, 2017, 18(1): 1-15. <https://doi.org/10.1186/s13059-017-1305-0>
#'
#' Bioconductor URL: <https://bioconductor.org/packages/release/bioc/html/splatter.html>
#'
#' Github URL: <https://github.com/Oshlack/splatter>
BASiCS_simulation <- function(parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
){
##############################################################################
#### Check ###
##############################################################################
assertthat::assert_that(class(parameters) == "BASiCSParams")
if(!is.null(other_prior)){
parameters <- simutils::set_parameters(parameters = parameters,
other_prior = other_prior,
method = "BASiCS")
}
# batchCells
if(!is.null(other_prior[["batchCells"]])){
if(length(other_prior[["batchCells"]]) != length(parameters@theta)){
stop("The length of batchCells must equal to the theta in parameters")
}
parameters <- splatter::setParam(parameters, name = "batchCells", value = other_prior[["batchCells"]])
}
# nGenes
if(!is.null(other_prior[["nGenes"]])){
parameters <- splatter::setParam(parameters, name = "nGenes", value = other_prior[["nGenes"]])
}
# Get params to check
params_check <- splatter::getParams(parameters, c("nCells",
"nGenes",
"nBatches"))
# Return to users
message(paste0("nCells: ", params_check[['nCells']]))
message(paste0("nGenes: ", params_check[['nGenes']]))
message(paste0("nBatches: ", params_check[['nBatches']]))
##############################################################################
#### Simulation ###
##############################################################################
if(verbose){
message("Simulating datasets using BASiCS")
}
# Seed
parameters <- splatter::setParam(parameters, name = "seed", value = seed)
# Simulation
simulate_detection <- peakRAM::peakRAM(
simulate_result <- splatter::BASiCSSimulate(parameters, verbose = verbose)
)
##############################################################################
#### Format Conversion ###
##############################################################################
# counts
counts <- as.matrix(SingleCellExperiment::counts(simulate_result))
# col_data
col_data <- as.data.frame(SummarizedExperiment::colData(simulate_result))
col_data <- col_data[, c("Cell", "Batch")]
colnames(col_data) <- c("cell_name", "batch")
col_data$batch <- paste0("Batch", col_data$batch)
# row_data
row_data <- data.frame("gene_name" = paste0("Gene", 1:nrow(counts)))
rownames(row_data) <- row_data$gene_name
simulate_result <- simutils::data_conversion(SCE_object = simulate_result,
return_format = return_format)
##############################################################################
#### Ouput ###
##############################################################################
simulate_output <- list(simulate_result = simulate_result,
simulate_detection = simulate_detection)
return(simulate_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.