#' Estimate Parameters From Real Datasets by dyngen
#'
#' This function is used to estimate useful parameters from a real dataset by
#' using \code{infer_trajectory} function in dynwrap package.
#'
#' @param ref_data A count matrix. Each row represents a gene and each column
#' represents a cell.
#' @param verbose Logical.
#' @param seed An integer of a random seed.
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @importFrom dynwrap infer_trajectory wrap_expression add_grouping
#' @return A list contains the estimated parameters and the results of execution
#' detection.
#' @export
#' @details
#' In dyngen, users can input cell group information if it is available. If cell
#' group information is not provided, the procedure will detect cell groups by
#' kmeans automatically.
#' See `Examples` for more instructions.
#'
#' @references
#' Cannoodt R, Saelens W, Deconinck L, et al. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells. Nature Communications, 2021, 12(1): 1-9. <https://doi.org/10.1038/s41467-021-24152-2>
#'
#' CRAN URL: <https://cran.r-project.org/web/packages/dyngen/index.html>
#'
#' Github URL: <https://github.com/dynverse/dyngen>
#' @examples
#' \dontrun{
#' ref_data <- simmethods::data
#'
#' estimate_result <- simmethods::dyngen_estimation(
#' ref_data = ref_data,
#' other_prior = NULL,
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' ## estimation with cell group information
#' group_condition <- paste0("Group", as.numeric(simmethods::group_condition))
#' estimate_result <- simmethods::dyngen_estimation(
#' ref_data = ref_data,
#' other_prior = list(group.condition = group_condition),
#' verbose = TRUE,
#' seed = 111
#' )
#' }
#'
dyngen_estimation <- function(ref_data,
verbose = FALSE,
other_prior,
seed){
##############################################################################
#### Check ###
##############################################################################
if(!is.matrix(ref_data)){
ref_data <- as.matrix(ref_data)
}
if(!requireNamespace("NbClust", quietly = TRUE)){
message("Installing NbClust...")
utils::install.packages("NbClust")
}
if(is.null(other_prior[["group.condition"]])){
message("Performing k-means and determin the best number of clusters...")
clust <- NbClust::NbClust(data = t(ref_data),
distance = 'euclidean',
min.nc = 2,
max.nc = sqrt(nrow(t(ref_data))),
method = "kmeans",
index = "dunn")
other_prior[["group.condition"]] <- paste0("Group", clust[["Best.partition"]])
}
ref_data <- dynwrap::wrap_expression(counts = t(ref_data),
expression = log2(t(ref_data) + 1))
## Add group
if(verbose){
message("Add grouping to data...")
}
ref_data <- dynwrap::add_grouping(dataset = ref_data,
grouping = other_prior[["group.condition"]])
##############################################################################
#### Estimation ###
##############################################################################
if(verbose){
message("Estimating parameters using dyngen")
}
if(!requireNamespace("tislingshot", quietly = TRUE)){
message("Installing tislingshot...")
devtools::install_github("dynverse/ti_slingshot/package/")
}
# Estimation
estimate_detection <- peakRAM::peakRAM(
estimate_result <- dynwrap::infer_trajectory(dataset = ref_data,
method = tislingshot::ti_slingshot(),
parameters = NULL,
give_priors = NULL,
seed = seed,
verbose = verbose)
)
estimate_result <- list(estimate_result = estimate_result,
data_dim = c(length(ref_data[["feature_ids"]]),
length(ref_data[["cell_ids"]])))
##############################################################################
#### Ouput ###
##############################################################################
estimate_output <- list(estimate_result = estimate_result,
estimate_detection = estimate_detection)
return(estimate_output)
}
#' Simulate Datasets by dyngen
#'
#' @param parameters A object generated by \code{\link[dynwrap]{infer_trajectory}}
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @param return_format A character. Alternative choices: list, SingleCellExperiment,
#' Seurat, h5ad. If you select `h5ad`, you will get a path where the .h5ad file saves to.
#' @param verbose Logical. Whether to return messages or not.
#' @param verbose Logical. Whether to return messages or not.
#' @param seed A random seed.
#' @importFrom tools R_user_dir
#' @export
#' @details
#' In dyngen, users can only set `nCells` and `nGenes` to specify the number of cells and genes in the
#' simulated dataset. See `Examples` for instructions.
#'
#' @references
#' Cannoodt R, Saelens W, Deconinck L, et al. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells. Nature Communications, 2021, 12(1): 1-9. <https://doi.org/10.1038/s41467-021-24152-2>
#'
#' CRAN URL: <https://cran.r-project.org/web/packages/dyngen/index.html>
#'
#' Github URL: <https://github.com/dynverse/dyngen>
#'
#' @examples
#' \dontrun{
#' ref_data <- simmethods::data
#'
#' ## estimation with cell group information
#' group_condition <- paste0("Group", as.numeric(simmethods::group_condition))
#' estimate_result <- simmethods::dyngen_estimation(
#' ref_data = ref_data,
#' other_prior = list(group.condition = group_condition),
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' # 1) Simulate with default parameters (need a lot of memory)
#' simulate_result <- simmethods::dyngen_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = NULL,
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#'
#' 2) 100 cells and 100 genes
#' simulate_result <- simmethods::dyngen_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = list(nCells = 100,
#' nGenes = 100),
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#' }
#'
dyngen_simulation <- function(parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("dyntoy", quietly = TRUE)){
message("dyntoy is not installed on your device")
message("Installing dyntoy...")
devtools::install_github("dynverse/dyngen")
}
##############################################################################
#### Check ###
##############################################################################
true_topology <- parameters[["estimate_result"]][["trajectory_type"]]
if(true_topology=='linear'){
backbone <- dyngen::backbone_linear()
}
if(true_topology=='bifurcation'){
backbone <- dyngen::backbone_bifurcating()
}
if(true_topology=='cycle'){
backbone <- dyngen::backbone_cycle()
}
if(true_topology=='tree'){
backbone <- dyngen::backbone_binary_tree()
}
if(true_topology=='multifurcation'){
backbone <- dyngen::backbone_trifurcating()
}
# nCells
if(!is.null(other_prior[["nCells"]])){
nCells <- other_prior[["nCells"]]
}else{
nCells <- parameters[["data_dim"]][2]
}
# nGenes
if(!is.null(other_prior[["nGenes"]])){
nGenes <- other_prior[["nGenes"]]
}else{
nGenes <- parameters[["data_dim"]][1]
}
# Return to users
message(paste0("nCells: ", nCells))
message(paste0("nGenes: ", nGenes))
# TFs and HKs
num_tfs <- nrow(backbone$module_info)
num_targets <- round((nGenes - num_tfs) / 2)
num_hks <- nGenes - num_targets - num_tfs
# Seed
set.seed(seed)
# Preparation
init <- dyngen::initialise_model(
backbone = backbone,
num_cells = nCells,
num_tfs = num_tfs,
num_targets = num_targets,
num_hks = num_hks,
download_cache_dir = tools::R_user_dir("dyngen", "data"),
simulation_params = dyngen::simulation_default(
census_interval = 0.01,
experiment_params = dyngen::simulation_type_wild_type(num_simulations = 1)
),
verbose = TRUE)
simulate_formals <- simutils::change_parameters(
function_expr = "dyngen::generate_dataset",
other_prior = list(model = init,
format = "list",
store_dimred = FALSE,
store_cellwise_grn = FALSE,
store_rna_velocity = FALSE),
step = "simulation"
)
env <- asNamespace("dyngen")
##############################################################################
#### Simulation ###
##############################################################################
if(verbose){
message("Simulating datasets using dyngen")
}
# Seed
set.seed(seed)
# Estimation
simulate_detection <- peakRAM::peakRAM(
simulate_result <- do.call(env[["generate_dataset"]], simulate_formals)
)
##############################################################################
#### Format Conversion ###
##############################################################################
counts <- t(as.matrix(simulate_result[["dataset"]][["counts"]]))
colnames(counts) <- paste0("Cell", 1:ncol(counts))
rownames(counts) <- paste0("Gene", 1:nrow(counts))
## col_data
col_data <- data.frame("cell_name" = colnames(counts))
## row_data
row_data <- data.frame("gene_name" = rownames(counts))
# Establish SingleCellExperiment
simulate_result <- SingleCellExperiment::SingleCellExperiment(list(counts = counts),
colData = col_data,
rowData = row_data)
simulate_result <- simutils::data_conversion(SCE_object = simulate_result,
return_format = return_format)
##############################################################################
#### Ouput ###
##############################################################################
simulate_output <- list(simulate_result = simulate_result,
simulate_detection = simulate_detection)
return(simulate_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.