ti_mfa | R Documentation |
Will generate a trajectory using MFA.
This method was wrapped inside a container. The original code of this method is available here.
ti_mfa(
iter = 2000L,
thin = 1L,
pc_initialise = 1L,
prop_collapse = 0L,
scale_input = TRUE,
zero_inflation = FALSE
)
iter |
Number of MCMC iterations. Domain: U(20, 5000). Default: 2000. Format: integer. |
thin |
MCMC samples to thin. Domain: U(1, 20). Default: 1. Format: integer. |
pc_initialise |
Which principal component to initialise pseudotimes to. Domain: U(1, 5). Default: 1. Format: integer. |
prop_collapse |
Proportion of Gibbs samples which should marginalise over c. Domain: U(0, 1). Default: 0. Format: numeric. |
scale_input |
Logical. If true, input is scaled to have mean 0 variance 1. Default: TRUE. Format: logical. |
zero_inflation |
Logical, should zero inflation be enabled?. Default: FALSE. Format: logical. |
A TI method wrapper to be used together with
infer_trajectory
Campbell, K.R., Yau, C., 2017. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers. Wellcome Open Research 2, 19.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.