View source: R/ti_projected_paga.R
ti_projected_paga | R Documentation |
Will generate a trajectory using Projected PAGA.
This method was wrapped inside a container. The original code of this method is available here.
ti_projected_paga(
filter_features = TRUE,
n_neighbors = 15L,
n_comps = 50L,
n_dcs = 15L,
resolution = 1L,
embedding_type = "fa",
tree = TRUE,
connectivity_cutoff = 0.05
)
filter_features |
Whether to do feature filtering. Default: TRUE. Format: logical. |
n_neighbors |
Number of neighbours for knn. Domain: U(1, 100). Default: 15. Format: integer. |
n_comps |
Number of principal components. Domain: U(0, 100). Default: 50. Format: integer. |
n_dcs |
Number of diffusion components for denoising graph, 0 means no denoising. Domain: U(0, 40). Default: 15. Format: integer. |
resolution |
Resolution of louvain clustering, which determines the granularity of the clustering. Higher values will result in more clusters. Domain: U(0.1, 10). Default: 1. Format: numeric. |
embedding_type |
Either 'umap' (scales very well, recommended for very large datasets) or 'fa' (ForceAtlas2, often a bit more intuitive for small datasets). Domain: umap, fa. Default: fa. Format: character. |
tree |
Whether a minimum spanning tree should be inferred. Default: TRUE. Format: logical. |
connectivity_cutoff |
Cutoff for the connectivity matrix, only useful of tree is FALSE. Domain: U(0, 1). Default: 0.05. Format: numeric. |
A TI method wrapper to be used together with
infer_trajectory
Wolf, F.A., Hamey, F., Plass, M., Solana, J., Dahlin, J.S., Göttgens, B., Rajewsky, N., Simon, L., Theis, F.J., 2017. Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.