ti_pseudogp | R Documentation |
Will generate a trajectory using pseudogp.
This method was wrapped inside a container. The original code of this method is available here.
ti_pseudogp(
smoothing_alpha = 10,
smoothing_beta = 3,
pseudotime_mean = 0.5,
pseudotime_var = 1,
chains = 3L,
iter = 100L,
dimreds = c("pca", "mds"),
initialise_from = "random"
)
smoothing_alpha |
The hyperparameter for the Gamma distribution that controls arc-length. Domain: U(1, 20). Default: 10. Format: numeric. |
smoothing_beta |
The hyperparameter for the Gamma distribution that controls arc-length. Domain: U(1, 20). Default: 3. Format: numeric. |
pseudotime_mean |
The mean of the constrained normal prior on the pseudotimes. Domain: U(0, 1). Default: 0.5. Format: numeric. |
pseudotime_var |
The variance of the constrained normal prior on the pseudotimes. Domain: U(0.01, 1). Default: 1. Format: numeric. |
chains |
The number of chains for the MCMC trace. Domain: U(1, 20). Default: 3. Format: integer. |
iter |
The number of iterations for the MCMC trace. Domain: e^U(4.61, 6.91). Default: 100. Format: integer. |
dimreds |
A character vector specifying which dimensionality reduction
methods to use. See |
initialise_from |
How to initialise the MCMC chain. One of "random" (stan
decides),"principal_curve", or "pca" (the first component of PCA rescaled is
taken to be the pseudotimes).Note: if multiple representations are provided,
|
A TI method wrapper to be used together with
infer_trajectory
Campbell, K.R., Yau, C., 2016. Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference. PLOS Computational Biology 12, e1005212.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.