ti_scoup | R Documentation |
Will generate a trajectory using SCOUP.
This method was wrapped inside a container. The original code of this method is available here.
ti_scoup(
ndim = 2L,
max_ite1 = 100L,
max_ite2 = 100L,
alpha = c(0.1, 100),
t = c(0.001, 2),
sigma_squared = 0.1,
thresh = 0.01
)
ndim |
Number of pca dimensions. Domain: U(2, 20). Default: 2. Format: integer. |
max_ite1 |
Upper bound of EM iteration (without pseudo-time optimization). Domain: e^U(0.69, 8.52). Default: 100. Format: integer. |
max_ite2 |
Upper bound of EM iteration (including pseudo-time optimization). Domain: e^U(0.69, 13.12). Default: 100. Format: integer. |
alpha |
Bounds of alpha. Domain: ( e^U(-6.91, 2.30), e^U(-6.91, 2.30) ). Default: (0.1, 100). Format: numeric_range. |
t |
Bounds of pseudo-time. Domain: ( e^U(-11.51, 0.00), e^U(-11.51, 0.00) ). Default: (0.001, 2). Format: numeric_range. |
sigma_squared |
Lower bound of sigma squared. Domain: e^U(-6.91, 2.30). Default: 0.1. Format: numeric. |
thresh |
Threshold. Domain: e^U(-4.61, 2.30). Default: 0.01. Format: numeric. |
A TI method wrapper to be used together with
infer_trajectory
Matsumoto, H., Kiryu, H., 2016. SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation. BMC Bioinformatics 17.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.