#' @param .lambda_vcurve Boolean. Whether to optimize Whittaker's parameter lambda by
#' V-curve theory? This parameter only works when lambda not provided.
#'
#' @param maxExtendMonth Previous and subsequent `maxExtendMonth` data were added
#' for every year curve fitting.
#' @param titlestr string for title
#' @param years.run Numeric vector. Which years to run? If not specified, it is
#' all years.
#' @param len_min,len_max the minimum and maximum length (in the unit of days)
#' of growing season
#' @param show.legend boolean
#'
#' @references
#' 1. Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod
#' Explains the Asynchronization Between Vegetation Carbon Phenology and
#' Vegetation Greenness Phenology. Journal of Geophysical Research:
#' Biogeosciences, 125(8), e2020JG005636.
#' https://doi.org/10.1029/2020JG005636
#' 2. Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for
#' reconstructing global MODIS EVI time series on the Google Earth Engine.
#' ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13-24.
#'
#' @importFrom lubridate leap_year
#' @rdname season
#' @export
# ' @param IsPlot.vc Whether to plot V-curve optimized time-series.
# ' @param IsPlot.OnlyBad If true, only plot partial figures whose NSE < 0.3.
season_mov <- function(INPUT, rFUN, wFUN, iters = 2, wmin = 0.1,
.lambda_vcurve = FALSE,
lambda = NULL, nf = 3, frame = floor(INPUT$nptperyear/5)*2 + 1,
maxExtendMonth = 12,
calendarYear = FALSE,
r_min = 0.05,
rtrough_max = 0.6,
...,
len_min = 45, len_max = 650,
.check_season = TRUE,
years.run = NULL,
IsPlot = FALSE,
# IsPlot.vc = FALSE, IsPlot.OnlyBad = FALSE,
show.legend = TRUE,
plotdat = INPUT, titlestr = "")
{
if (missing(wFUN)) wFUN = get(.options$wFUN_rough)
if (missing(rFUN)) rFUN = .options$rFUN
rFUN = check_function(rFUN)
wFUN = check_function(wFUN)
nptperyear <- INPUT$nptperyear
south <- INPUT$south
t <- INPUT$t
nlen <- length(t)
# 1. How many years data
date_year <- year(t) + ((month(t) >= 7)-1)*south # ecology date
info <- table(date_year) # rm years with limited obs
years <- info[info > nptperyear*0.2] %>% {as.numeric(names(.))}
nyear <- length(years)
# 20191128: major update, set `r_min = 0`
params <- list(
rFUN = rFUN, wFUN = wFUN, iters = iters, wmin = wmin,
nf = nf, frame = frame,
IsPlot = FALSE, plotdat = plotdat,
.check_season = .check_season,
rtrough_max = rtrough_max, r_min = r_min*0, ...)
has_lambda = !(is.null(lambda) || is.na(lambda))
width_ylu <- nptperyear*0 # already 3y group, moving window for ylu unnecessary
nextend <- ceiling(maxExtendMonth/12*nptperyear)
width_ylu <- nptperyear*2 # This is quite important, to make time-series continuous.
# modified options:run all years
# years0 = years[-c(1, nyear)] # original years before `add_HeadTail`
if (is.null(years.run)) {
years.run = years
} else years.run = intersect(years.run, years)
brks <- list()
vcs <- vector("list", length(years.run)) %>% set_names(years.run)
for (year_i in years.run) {
i = which(year_i == years)
if (.options$verbose_season_mov) fprintf(" [season_mov] running %d ... \n", i)
# I <- which(date_year %in% years[(i-ny_extend):(i+ny_extend)]) # 3y index
I <- which(date_year %in% years[i]) # 3y index
# `nextend` is not enough
ylu <- get_ylu(INPUT$y, date_year, INPUT$w, width = width_ylu, I, Imedian = TRUE, wmin)
ylu <- merge_ylu(INPUT$ylu, ylu) # curvefits.R
# extend curve fitting period, for continuity.
I <- seq( max(1, first(I) - nextend), min(last(I) + nextend, nlen) )
input <- lapply(INPUT[c("t", "y", "w")], `[`, I) # y, t, w
input <- c(input, list(ylu = ylu, nptperyear=nptperyear, south=south))
if (!has_lambda) {
vc = guess_lambda(input, wFUN, iters, .lambda_vcurve) # IsPlot.vc
lambda = vc$lambda; vcs[[i]] <- vc
}
params_i = c(list(INPUT = input, lambda = lambda), params)
brk <- do.call(season, params_i)
if (!is.null(brk$dt)){
brk$dt %<>% subset(year == year_i)
brk$dt$lambda <- lambda
}
if (is.null(brk$dt) || nrow(brk$dt) == 0){
# if have no brks, try to decrease r_max
params_i$r_max <- max(params_i$r_max-0.1, 0.05)
brk <- do.call(season, params_i)
# we need `rfit` time-series, so can't skip NULL brks.
if (!is.null(brk$dt)){
brk$dt %<>% subset(year == year_i)
brk$dt$lambda <- lambda
}
}
brks[[i]] <- list(fit = brk$fit[date_year[I] == year_i, ], dt = brk$dt)
}
brks = set_names(brks, years.run) %>% rm_empty() %>% purrr::transpose()
brks$fit %<>% do.call(rbind, .)
if (calendarYear) {
# BUG: need to remove incomplete year
brks$dt <- season_calendar(years.run, south)
} else {
dt <- do.call(rbind, brks$dt)
if (is.null(dt)) {
warning( 'No growing season found!'); return(NULL)
}
if (.check_season) {
brks$dt <- cheak_season_list(brks$dt, rtrough_max, r_min, len_min, len_max)
}
}
brks$GOF <- stat_season(INPUT, brks)
## VISUALIZATION
if (IsPlot) plot_season(INPUT, brks, plotdat, ylu = INPUT$ylu, IsPlot.OnlyBad = FALSE, show.legend = show.legend)
if (!has_lambda && .lambda_vcurve) brks$optim <- vcs
return(brks)
}
guess_lambda <- function(input, wFUN = wTSM, iters = 2, .lambda_vcurve = FALSE, IsPlot.vc = FALSE, ...) {
if (.lambda_vcurve) {
y <- input$y %>% rm_empty() # should be NA values now
# update 20181029, add v_curve lambda optimiazaiton in season_mov
vc <- v_curve(input,
lg_lambdas = seq(0, 3, by = 0.005), d = 2,
wFUN = wFUN, iters = iters, IsPlot = IsPlot.vc)
} else {
vc <- NULL
vc$lambda <- init_lambda(input$y) #* 2
}
vc
}
#' @rdname check_season
#' @export
check_season_dt <- function(dt, rtrough_max, r_min,
len_min = 45, len_max = 650)
{
dt <- dt[len > len_min & len < len_max, ] # mask too long and short gs
check_season(dt, rtrough_max = rtrough_max, r_min = r_min)
dt[y_peak != -9999.0 & (len > len_min & len < len_max), ]
}
#' @param dt data.table of growing season dividing info
#' @param lst_dt list of `dt`. Every year is corresponding to a `dt`.
#'
#' @inheritParams season_mov
#' @rdname check_season
#' @export
cheak_season_list <- function(lst_dt, rtrough_max, r_min,
len_min = 45, len_max = 650)
{
if (is.data.frame(lst_dt)) lst_dt = list(lst_dt)
lst_dt %<>% rm_empty()
res <- list()
for(i in seq_along(lst_dt)) {
dt = lst_dt[[i]]
res[[i]] <- check_season_dt(dt, rtrough_max, r_min, len_min, len_max)
}
dt2 = do.call(rbind, res)
check_season_dt(dt2, rtrough_max, r_min, len_min, len_max)
}
season_calendar <- function(years, south = FALSE){
date_begin <- ifelse(south, "0701", "0101") %>% paste0(years, .) %>% ymd()
date_end <- {if (south) paste0(years+1, "0630") else paste0(years, "1231") } %>% ymd()
dt <- data.table(
beg = date_begin,
end = date_end,
year= years,
len = as.numeric(difftime(date_end, date_begin, units = "days")) + 1) %>%
cbind(season = 1, flag = sprintf("%d_1", years))
dt
}
# triplicate HANTS test, 2018-09-19
# Not perfect at all for regions with multiple growing season.
# No one method can cope with all the situation.
# {
# nextend <- length(I)
# I_beg <- max(1, first(I) - nextend)
# I_end <- min(last(I) + nextend, nlen)
# yi <- INPUT$y[I]
# yhead <- I_beg:(first(I) - 1) %>% { . - .[1] + 1} %>% yi[.]
# ytail <- (last(I)+1):I_end %>% { . - .[1] + 1} %>% yi[.]
# yi <- c(yhead, yi, ytail)
# I <- I_beg:I_end
# input$y <- yi
# }
#' statistics
#' @param brks A list object returned by `season` or `season_mov`.
#'
#' @keywords internal
#' @rdname season
stat_season <- function(INPUT, brks){
d_org <- if (!is.data.table(INPUT)) as.data.table(INPUT[c("t", "y0", "w")]) else INPUT
d_fit <- brks$fit %>% .[,.SD,.SDcols=c(1, ncol(.))] %>% set_colnames(c("t", "ypred"))
d <- merge(d_org, d_fit, by = "t")
stat <- with(d, GOF(y0, ypred, w, include.cv = TRUE, include.r = TRUE))# %>% as.list()
nseason <- ifelse(is.data.frame(brks$dt), nrow(brks$dt), NA)
stat['nseason'] <- nseason
# str_title <- sprintf("[%s] IGBP = %s, %s, lat = %.2f", sitename, IGBP_name, stat_str, lat)
# str_title <- paste(titlestr, stat_txt)
# NSE <- stat$NSE
# cv <- stat$cv
stat
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.