# Set up the environment
# remotes::install_github("energyandcleanair/creapuff", dependencies=T, update=F)
# devtools::reload(pkgload::inst("creapuff"))
library(lubridate)
library(tidyverse)
library(magrittr)
library(creapuff)
library(readxl)
library(writexl)
library(pbapply)
library(parallel)
# project_dir="Z:/" # network disk (wrf_data). If Z disk is not present: mount 10.58.186.210:/wrf_data Z:)
project_dir="G:/IndonesiaIESR" # calpuff_external_data-2 persistent disk (project data)
load(file.path(project_dir, 'CALPUFF_setup.RData'))
# Parameters ###################################################################
# ============================= Project specific ===============================
expand_grids = '*' # All grids are expanded (for CALMET)
expand_ncells = -5 # Number of cells to expand met grid (e.g., for WRF data, exclusion of last 5 cells) in each direction (use negative values to crop).
crop_grid = list(extent(c(xmin=-2000, xmax=6000, ymin=8000, ymax=11500)), NA, NA)
wrf_dir <- file.path(project_dir,"calwrf") # Where calwrf data are stored
output_dir <- file.path(project_dir,"calpuff_suite") ; if (!dir.exists(output_dir)) dir.create(output_dir) # Where to write all generated files
emissions_dir <- file.path(project_dir,"emissions") # Directory where arbitrary-varying emission files are stored
#input_xls <- file.path(emissions_dir,"emissions.xlsx") # File where constant-emission data are specified
#input_xls <- file.path(emissions_dir,"emissions_clustered")
# Emission file should contain the following fields :
# Plants Scenario Lat[deg] Long[deg] Status COD[year] NOx_tpa[t/y] SO2_tpa[t/y] PM_tpa[t/y] Hg_kgpa[kg/y]
# AQCS FGD[logical] Exit temperature[C] Stack diameter[m] Stack height[m] Exit velocity[m/s]
# ================================ General =====================================
# BE CAREFUL : gis_dir/landcover/C3S-LC-L4-LCCS-Map-300m-P1Y-2018-v2.1.1.nc is CORRUPETED in the repository !! You should replace it with a good one
gis_dir <- "H:/gis" # The folder where we store general GIS data
bc_dir <- file.path(gis_dir, "background") # The folder with background atmospheric concentrations for O3, NH3, H2O2
exe_dir="C:/CALPUFF"
calmet_exe <- file.path(exe_dir,"CALMET_v6.5.0_L150223/calmet_v6.5.0.exe")
calpuff_exe <- file.path(exe_dir,"CALPUFF_v7.2.1_L150618/calpuff_v7.2.1.exe")
pu_exe <- file.path(exe_dir,"POSTUTIL_v7.0.0_L150207/postutil_v7.0.0.exe")
calpost_exe <- file.path(exe_dir,"CALPOST_v7.1.0_L141010/calpost_v7.1.0.exe")
template_dir="H:/templates"
calmet_templates <- list(noobs=file.path(template_dir,"CALMET_template.INP"),
surfobs=file.path(template_dir,"CALMET_surfObs_template.inp"))
calpuff_template <- file.path(template_dir,"CALPUFF_7.0_template_Hg.INP") # Mercury (Hg) in emission file
pu_templates <- list (repartition = file.path(template_dir, "Mintia_postutilRepartition.inp"), # Mercury (Hg) in emission file
deposition = file.path(template_dir, "Mintia_postutil_depo.inp"),
total_pm = file.path(template_dir, "Mintia_postutil_PM10.inp")) # Mercury (Hg) in emission file
# calpuff_template <- file.path(template_dir,"CALPUFF_7.0_template.INP") # No mercury in emission file
# pu_templates <- list (repartition = file.path(template_dir, "Mintia_postutilRepartition_noHg.inp"), # No mercury in emission file
# deposition = file.path(template_dir, "Mintia_postutil_depo.inp"),
# total_pm = file.path(template_dir, "Mintia_postutil_PM10_noHg.inp")) # No mercury in emission file
calpost_templates <- list(concentration = file.path(template_dir, "Mintia_AllOutput_calpost.inp"),
deposition = file.path(template_dir, "Mintia_depo_calpost.inp"))
# CALMET #######################################################################
list.files(path = wrf_dir, pattern = '\\.m3d$', recursive = F, full.names = T) %>%
file.rename(., gsub('nest_', 'nest', .))
calmet_result <- runCalmet(
wrf_dir = wrf_dir,
crop_grid = crop_grid,
output_dir = output_dir,
gis_dir = gis_dir,
calmet_exe = calmet_exe,
calmet_templates = calmet_templates,
only_make_additional_files=T,
run_calmet = F
)
#browser()
calmet_result <- readRDS(file.path(output_dir,"calmet_result.RDS" ))
# INPUT DATA ###################################################################
# ============================== Emissions =====================================
# Define target_crs
calmet_result$params %>% lapply(data.frame) %>% bind_rows(.id='grid_name') %>% mutate(run_name=calmet_result$run_name) %>%
mutate_at(c('DGRIDKM', 'XORIGKM', 'YORIGKM', 'NX', 'NY'), as.numeric) %>%
rename(UTMZ=IUTMZN,
UTMH=UTMHEM,
GridD=DGRIDKM,
GridNX=NX,
GridNY=NY,
GridX=XORIGKM,
GridY=YORIGKM) %>%
mutate(StartDate=paste(IBYR, IBMO, IBDY) %>% ymd %>% format("%Y%m%d"),
EndDate=paste(IEYR, IEMO, IEDY) %>% ymd %>% format("%Y%m%d"),
TZ=ABTZ %>% gsub('UTC', '', .) %>% as.numeric %>% divide_by(100)) -> out_files
target_crs <- get_utm_proj(zone = unique(out_files$UTMZ), hem = unique(out_files$UTMH))
# Read emission data from file
read_csv(file.path(emissions_dir, 'emissions, clustered.csv')) -> emissions_data
if (emissions_data$emission_names %>% nchar %>% max > 8) stop("ERROR in plant-name length (too many plants with the same name?)")
# Create polygons of grid boundaries
dom_pols = grids_to_domains(calmet_result$grids, target_crs)
# Exclude sources outside domain
emissions_data %<>% to_spdf %>% crop(spTransform(dom_pols, crs(.))) %>% '@'('data')
emissions_data %<>% rename(exit.temperature=contains('Exit.Temp'), stack.height=contains('Height'))
emissions_data$exit.temperature %<>% pmax(40) %>% add(273.15)
# browser()
# ============================== Receptors =====================================
# MESHDN parameter (in CALPUFF.INP) which defines the grid spacing
# (DGRIDKM/MECHDN) of each disk, wrt the grid spacing of the outer
# meteo grid (DGRIDKM). Higher factor: higher density of receptors.
#
runs = unique(emissions_data$emission_names)
runs %>% file.path(output_dir, .) %>% paste0('.CON') %>% file.info() -> run_df
queue = runs[is.na(run_df$size) | run_df$size<1.5e9]
base_res <- calmet_result$params %>% sapply('[[', 'DGRIDKM') %>% as.numeric %>% max
nesting_factors = c(1,2,6,12,30) # 60km, 30km, 10km, 5km, 2km # c(1,2,5,15)
#nesting_factors = c(1,5,15) # 15km, 3km, 1km
rec_file=file.path(output_dir, 'receptors.RDS')
if(!file.exists(rec_file)) {
receptors = list()
queue = unique(emissions_data$emission_names) %>% subset(. %notin% names(receptors))
for(run in queue) {
emissions_data_run <- emissions_data %>% filter(emission_names == run) %>% head(1)
loc <- emissions_data_run %>% to_spdf %>% spTransform(target_crs)
# Get discrete receptors with 400x400 dim
get_recep(loc = loc,
run_name = calmet_result$run_name,
nesting_factors=nesting_factors,
files_met=out_files,
target_crs=target_crs) -> receptors[[run]]
print(run)
}
saveRDS(receptors, rec_file)
}
receptors <- readRDS(rec_file)
# Select discrete receptors around sources
# Radius of receptor disks [km], from outer to inner disk
#
#nesfact_range = c(125,50,25,5) # c(150,75,25,5) # c(150,75,25,10) # c(125,75,25,5)
nesfact_range = c(750, 300, 100, 50, 20) # c(125,25,10)
# CALPUFF ######################################################################
shp=readRDS(file.path(gis_dir, 'boundaries', 'gadm36_0_low.RDS'))
shp_utm = shp %>% cropProj(calmet_result$grids[[1]])
bgconc_file <- file.path(output_dir, 'bgconcs.RDS')
if(!file.exists(bgconc_file)) {
bgconcs <- list()
for(run in queue) {
message(run)
sources <- emissions_data %>% filter(emission_names==run) %>% to_spdf %>% spTransform(target_crs)
bgconcs[[run]] <- get_bg_concs(sources, mod_dir=bc_dir)
}
bgconcs %>% saveRDS(bgconc_file)
}
bgconcs <- readRDS(bgconc_file)
creapuff.env <- list()
creapuff.env$llproj <- '+proj=longlat +datum=WGS84 +no_defs'
queue = runs[!file.exists(file.path(output_dir, paste0('receptors_', runs, '.RDS')))]
for(run in queue) {
message(run)
sources <- emissions_data %>% filter(emission_names==run) %>% to_spdf %>% spTransform(target_crs)
receptors[[run]] %>% select_receptors(sources=sources,
run_name = run,
nesting_factors=nesting_factors,
nesfact_range=nesfact_range,
files_met=out_files,
plotadm=shp) ->
receptors_run
# Discrete receptor background grid
receptors_run[receptors_run$Xkm %% (base_res*2) < base_res & receptors_run$Ykm %% (base_res*2) < base_res & receptors_run$nesfact==1, 'include'] <- T
# Receptor check
print(paste('Adding background grid:', calmet_result$run_name, sum(receptors_run$include), 'receptors'))
if(sum(receptors$include)>=10000) stop('too many receptors!') # LC
# Receptor plot
quickpng(file.path(output_dir, paste0(run, '_', 'receptors+background_grid.png')) )
receptors_run %>% subset(include==1) %>% plot(cex=.2)
plot(sources, col='blue', add=T)
shp_utm %>% subset(NAME_0=='Indonesia') %>% plot(add=T, border='gray')
dev.off()
receptors_run %>% saveRDS(file.path(output_dir, paste0('receptors_', run, '.RDS')))
}
queue=runs
for(run in queue) {
sources <- emissions_data %>% filter(emission_names==run) %>% to_spdf %>% spTransform(target_crs)
receptors_run <- readRDS(file.path(output_dir, paste0('receptors_', run, '.RDS')))
o3dat <- NULL # Hourly ozone data file (NULL: no ozone monitoring stations)
emissions_data_run <- emissions_data %>% filter(emission_names == run) %>% rename(SO2_tpa=SOx_tpa)
print(paste0("CALPUFF run name: ", run))
calpuff_result <- runCalpuff(
emissions_data = emissions_data_run, # For constant emission data
source_names = emissions_data_run$emission_names, # Optional. If not set: read from emissions_data (if not present, set automatically)
FGD = T, # Optional. If not set: read from emissions_data (if not present an error occurs)
receptors = receptors_run %>% subset(include), # Optional. If not set: full domain grid
o3dat = o3dat, # Optional. If not set: no surface data
# species_configuration = "so2_nox_pm", # Two possible values: "so2_nox_pm" or "so2_nox_pm_hg"
species_configuration = "so2_nox_pm_hg",
bgconcs = bgconcs[[run]], # Optional. If not set: std values
# addparams = addparams, # Optional. If not set: std values
run_name = run,
output_dir = output_dir,
params_allgrids = calmet_result$params,
gis_dir = gis_dir,
calpuff_exe = calpuff_exe,
calpuff_template = calpuff_template,
)
}
#write out bat files to run in batches
queue=runs[paste0(runs, '.CON') %>% file.path(output_dir, .) %>% file.exists() %>% not]
#queue=runs
file.path(output_dir, paste0(queue, '_CALPUFF_7.0.inp')) %>% split(1:4) -> batches
#calpuff_result %>% lapply('[[', 'inpfiles_created') %>% unlist %>% split(1:6) -> batches
for(i in seq_along(batches)) {
batches[[i]] %>% paste(calpuff_exe, .) %>% c('pause') %>%
writeLines(file.path(output_dir, paste0('CALPUFF_batch3_', i, '.bat')))
}
# POST-PROCESSING ##############################################################
plants = emissions_data$emission_names %>% unique
#queue=plants[paste0(plants, '.CON') %>% file.path(output_dir, .) %>% file.exists()]
queue=plants[paste0(plants, '_totalpm.CON') %>% file.path(output_dir, .) %>% file.exists() %>% not]
# Load all CAPUFF results, from calpuff_result_*.RDS
calpuff_results_all <- file.path(output_dir, paste0('calpuff_result_',plants,'.RDS')) %>% lapply(readRDS)
calpuff_results_all %>% lapply('[[', 'inpfiles_created') %>% unlist -> inpfiles_created
names(calpuff_results_all) <- gsub(paste0('.*/','|_CALPUFF.*\\.inp'), '', inpfiles_created) # TO DO : delete calmet_result$run_name in run name !
names(inpfiles_created) <- names(calpuff_results_all)
get_cp_period <- function(params) {
runyr = as.numeric(params$val[params$name=='ISYR']) + ifelse(params$val[params$name=='ISMO']==12, 1, 0)
list(start = paste0(runyr, '-01-01 0') %>% ymd_h,
end = paste0(runyr+1, '-01-01 0') %>% ymd_h)
}
for (plant in plants) {
scenario_prefix <- plant
# ---
calpuff_results_all[names(calpuff_results_all) == plant] -> calpuff_results_case
inpfiles_created[names(inpfiles_created) == plant] -> inpfiles_created_case
emissions_data %>% filter(emission_names %in% names(inpfiles_created_case)) -> emissions_data_case
# ==============================================================================
# 1. Create "SUMRUNS" INP files for summing up all CALPUFF outputs for each station, for :
# - concentrations (.CON), no need for nitrate reparation (MNITRATE = 0), a further run will do the repartition
# - deposition (.DRY, .WET) (together with acid, mercury, dust species)
files_met <- out_files # or calpuff_results_all[[1]]$out_files # All clusters have the same meteo
first_cluster_inp <- inpfiles_created_case[1]
first_cluster_name <- names(inpfiles_created_case)[1]
if(!is.null(calpuff_results_case[[1]][['pm10fraction']]))
calpuff_results_case %>% lapply('[[', 'pm10fraction') %>% unlist %>% mean() -> pm10fraction
# Generate "generic" PU and CP INP files (only for the first cluster, run_pu=F, run_calpost=F)
creapuff::runPostprocessing(
calpuff_inp=first_cluster_inp,
cp_run_name=names(first_cluster_inp),
output_dir=output_dir,
files_met = files_met,
pm10fraction=pm10fraction,
METRUN = 0,
nper = NULL,
pu_start_hour = NULL,
cp_species = c('PM25', 'TPM10', 'TSP', 'SO2', 'NO2', 'SO4', 'NO3', 'PPM25'),
cp_period_function = get_cp_period,
run_discrete_receptors=T,
run_gridded_receptors=F,
run_concentrations=T,
run_deposition=T,
run_timeseries = F,
#run_hourly = c('PM25', 'NO2', 'SO2'),
run_pu=F,
run_calpost=F,
pu_templates = pu_templates,
calpost_templates=calpost_templates
)
}
#write out bat files to run in batches
queue %>% split(1:4) -> batches
for(i in seq_along(batches)) {
paste0('pu_', batches[[i]], '.bat') %>% file.path(output_dir, .) %>% lapply(readLines) -> pu_lines
paste0('calpost_', batches[[i]], '.bat') %>% file.path(output_dir, .) %>% lapply(readLines) -> cp_lines
c(pu_lines[[1]][1],
c(pu_lines, cp_lines) %>% unlist %>% subset(!grepl('cd |pause', .)),
'pause') %>%
writeLines(file.path(output_dir, paste0('batch_', i, '.bat')))
}
#aggregated total of all runs
pm10fraction_mean = calpuff_results_all %>% lapply('[[', 'pm10fraction') %>% unlist %>% mean
runPostprocessing(
calpuff_inp=inpfiles_created[[1]],
run_name = plants[1:99],
run_name_out = 'baseall1',
cp_run_name = 'baseall1',
output_dir=output_dir,
files_met = out_files,
pm10fraction=pm10fraction_mean,
METRUN = 0,
nper = NULL,
pu_start_hour = NULL,
cp_species = c('PM25', 'TPM10', 'TSP', 'SO2', 'NO2'),
cp_period_function = get_cp_period,
run_discrete_receptors=T,
run_gridded_receptors=F,
run_concentrations=T,
run_deposition=T,
run_timeseries = T,
run_hourly = c('PM25', 'NO2', 'SO2'),
run_pu=F,
run_calpost=F,
pu_templates = pu_templates,
calpost_templates=calpost_templates
)
#aggregated scenarios
emissions_clustered_all <- read_csv(file.path(emissions_dir, 'emissions, clustered.csv'))
emissions_clustered_all %>% group_by(cluster) %>%
mutate(across(ends_with("pa"), ~.x/.x[case=='2022'])) ->
emissions_scaling
emissions_scaling %>%
group_by(case) %>%
group_map(function(df, group) {
scaling_case <- emissions_scaling %>% ungroup %>% filter(case==group$case) %>%
select(emission_names, pm=PM_tpa, so2=SOx_tpa, nox=NOx_tpa, hg=Hg_tpa) %>%
split(f=.$emission_names) %>%
lapply(select, -emission_names)
if(group$case=='2022') scaling_case <- NULL
list(run_name_out=group$case,
run_name=df$emission_names,
cp_run_name = group$case,
emissions_scaling = scaling_case)
}) -> run_queue
runScaling <- function(x) {
message(x$run_name_out)
runPostprocessing(
calpuff_inp=inpfiles_created[[1]],
run_name = x$run_name,
run_name_out = x$run_name_out,
cp_run_name = x$cp_run_name,
output_dir=output_dir,
files_met = out_files,
pm10fraction=calpuff_results_all[['LCPP_IPP']]$pm10fraction,
METRUN = 0,
nper = NULL,
pu_start_hour = NULL,
cp_species = c('PM25', 'TPM10', 'TSP', 'SO2', 'NO2'),
cp_period_function = get_cp_period,
run_discrete_receptors=T,
run_gridded_receptors=F,
run_concentrations=T,
run_deposition=T,
run_timeseries = F,
run_hourly = c('SO2', 'NO2'), #c('PM25', 'NO2', 'SO2'),
emissions_scaling = x$emissions_scaling,
run_pu=F,
run_calpost=F,
pu_templates = pu_templates,
calpost_templates=calpost_templates
)
}
run_queue %>% lapply(runScaling)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.