knitr::opts_chunk$set(echo = params$printcode)
This html document contains what parameters values were selected on the IDEP interface of the "Clustering" tab. It also includes the plots generated from those selections.
for (i in 1:length(params)) { # exclude loaded data & sample info if (names(params)[i] != "sample_info" && names(params)[i] != "pre_processed_data" && names(params)[i] != "all_gene_names") { cat(paste0(names(params)[i], ": ", params[[i]], "\n")) } }
r params$descr
The following plots were generated using IDEP with the following filters: Include only the top r params$n_genes
genes using r params$select_gene_id
to label color scheme: r params$heatmap_color_select
distance: r switch(params$dist_function, "1" = "Hierarchical", "2" = "K-Means")
Linkage: r params$hclust_function
Cut off Z-score: r params$heatmap_cutoff
Center Genes: r params$gene_centering
Gene normalize: r params$gene_normalize
Do not cluster samples: r params$no_sample_clustering
Show row Dendogram: r params$show_row_dend
The following plots were generated using IDEP, including only the top r params$n_genes
genes, using r params$select_gene_id
to label, r switch(params$dist_function, "1" = "Hierarchical", "2" = "K-Means")
distance,r params$hclust_function
linkage, Cut off Z-score: r params$heatmap_cutoff
, Center Genes: r params$gene_centering
. genes are r if(!params$gene_normalize) paste0(" not ")
normalized.
heatmap_data <- process_heatmap_data( data = params$pre_processed_data, n_genes_max = params$n_genes, # n_genes_min = 50, gene_centering = params$gene_centering, gene_normalize = params$gene_normalize, sample_centering = TRUE, sample_normalize = TRUE, all_gene_names = params$all_gene_names, select_gene_id = params$select_gene_id ) k_means_elbow(heatmap_data = heatmap_data)
ht <- heatmap_main( data = heatmap_data, cluster_meth = params$cluster_meth, heatmap_cutoff = params$heatmap_cutoff, sample_info = params$sample_info, select_factors_heatmap = params$list_factors_heatmap, dist_funs = dist_functions(), dist_function = params$dist_function, hclust_function = params$hclust_function, sample_clustering = params$sample_clustering, heatmap_color_select = params$heatmap_color_select, row_dend = params$show_row_dend, k_clusters = params$k_clusters, re_run = FALSE, selected_genes = params$selected_genes )
sd_density( data = params$pre_processed_data, n_genes_max = params$n_genes )
r ifelse(as.character(params$dist_function) == "1","## Tree (Hierarchical)","")
if (params$dist_function == 1) { draw_sample_tree( tree_data = params$pre_processed_data, gene_centering = params$gene_centering, gene_normalize = params$gene_normalize, sample_centering = FALSE, sample_normalize = FALSE, hclust_funs = hcluster_functions(), hclust_function = params$hclust_function, dist_funs = dist_functions(), dist_function = params$dist_function ) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.