rm(list = ls())
library(nimble)
library(igraph)
library(coda)
library(dplyr)
library(tidyr)
library(ggplot2)
library(LianaHPDA)
library(reshape2)
e1_approx <- nimbleFunction(
run = function(x = double(1)) {
returnType(double(1))
A <- log((0.56146 / x + 0.65) * (1 + x))
B <- x^4 * exp(7.7 * x) * (2 + x)^3.7
return((A^-7.7 + B)^-0.13)
})
NIMprospect5 <- nimbleFunction(
run = function(N = double(0),Cab = double(0),Car = double(0), Cw = double(0), Cm = double(0),
dataspec_p5 = double(2),talf = double(1),t12 = double(1),t21 = double(1), Nwl = double(0)) {
cc <- matrix(NA,nrow = 5,ncol = 1)
k <- numeric(length = Nwl)
Cbrown <- 0
cc[1,1] <- Cab / N
cc[2,1] <- Car / N
cc[3,1] <- Cbrown / N
cc[4,1] <- Cw / N
cc[5,1] <- Cm / N
k[] <- dataspec_p5[,] %*% cc[,]
trans <- (1 - k)*exp(-k) + k^2 *e1_approx(k)
trans[trans < 0] <- 0
ralf <- 1 - talf
r12 <- 1 - t12
r21 <- 1 - t21
denom <- 1 - (r21 ^ 2) * (trans ^ 2)
Ta <- talf * trans * t21 / denom
Ra <- ralf + r21 * trans * Ta
tt <- t12 * trans * t21 / denom
rr <- r12 + r21 * trans * tt
gt1 <- rr + tt >= 1
tgt1 <- tt[gt1]
Tsub <- 0*tt
Rsub <- 0*tt
r <- 0*tt
t <- 0*tt
Tsub[gt1] <- tgt1 / (tgt1 + (1 - tgt1) * (N - 1))
Rsub[gt1] <- 1 - Tsub[gt1]
inf <- rr == 0 | tt == 0
Tsub[inf] <- 0
Rsub[inf] <- 0
r <- rr[!gt1 & !inf]
t <- tt[!gt1 & !inf]
D <- sqrt((1 + r + t) * (1 + r - t) * (1 - r + t) * (1 - r - t))
r2 <- r ^ 2
t2 <- t ^ 2
va <- (1 + r2 - t2 + D) / (2 * r)
vb <- (1 - r2 + t2 + D) / (2 * t)
vbNN <- vb ^ (N - 1)
vbNN2 <- vbNN ^ 2
va2 <- va ^ 2
denomx <- va2 * vbNN2 - 1
Rsub[!gt1 & !inf] <- va * (vbNN2 - 1) / denomx
Tsub[!gt1 & !inf] <- vbNN * (va2 - 1) / denomx
denomy <- 1 - Rsub * rr
reflectance <- Ra + Ta * Rsub * tt / denomy
returnType(double(1))
if (N < 1.1 | Car < 0 | Cab < 0 | Cm <= 0 | Cw <0) {
return(-9999*(reflectance**0))
} else{
return(reflectance)
}
})
run_prospect5 <- nimbleCode({
sd_species_N ~ dunif(0.,1)
sd_species_Cab ~ dunif(0.,50)
sd_species_Car ~ dunif(0.,20)
sd_species_Cw ~ dunif(0.,0.05)
sd_species_Cm ~ dunif(0.,0.05)
for (ispecies in seq(1,Nspecies)){
sd_leaf_N[ispecies] ~ dunif(0.0,0.5)
sd_leaf_Cab[ispecies] ~ dunif(0.,30)
sd_leaf_Car[ispecies] ~ dunif(0.,10)
sd_leaf_Cw[ispecies] ~ dunif(0.,0.02)
sd_leaf_Cm[ispecies] ~ dunif(0.,0.02)
# Species fixed effect
nu_species_N[ispecies] ~ dnorm(0, sd = sd_species_N)
nu_species_Cab[ispecies] ~ dnorm(0, sd = sd_species_Cab)
nu_species_Car[ispecies] ~ dnorm(0, sd = sd_species_Car)
nu_species_Cw[ispecies] ~ dnorm(0, sd = sd_species_Cw)
nu_species_Cm[ispecies] ~ dnorm(0, sd = sd_species_Cm)
for (ileaf in seq(1,Nleaves[ispecies])){
# leaf random effect
nu_leaf_N[ispecies,ileaf] ~ dnorm(0, sd = sd_leaf_N[ispecies])
nu_leaf_Cab[ispecies,ileaf] ~ dnorm(0, sd = sd_leaf_Cab[ispecies])
nu_leaf_Car[ispecies,ileaf] ~ dnorm(0, sd = sd_leaf_Car[ispecies])
nu_leaf_Cw[ispecies,ileaf] ~ dnorm(0, sd = sd_leaf_Cw[ispecies])
nu_leaf_Cm[ispecies,ileaf] ~ dnorm(0, sd = sd_leaf_Cm[ispecies])
reflectance[1:Nwl,ispecies,ileaf] <- NIMprospect5(Nmean + nu_species_N[ispecies] + nu_leaf_N[ispecies,ileaf],
Cabmean + nu_species_Cab[ispecies] + nu_leaf_Cab[ispecies,ileaf],
Carmean + nu_species_Car[ispecies] + nu_leaf_Car[ispecies,ileaf],
Cwmean + nu_species_Cw[ispecies] + nu_leaf_Cw[ispecies,ileaf],
Cmmean + nu_species_Cm[ispecies] + nu_leaf_Cm[ispecies,ileaf],
dataspec_p5[,], talf[],t12[],t21[], Nwl)
for (j in 1:Nwl){
obs_reflectance[j,ispecies,ileaf] ~ dnorm(reflectance[j,ispecies,ileaf], sd = max(0,Standard.Dev))
}
}
}
Standard.Dev ~ dunif(0,1)
Nmean ~ dunif(1.1,5)
Cabmean ~ dunif(0,250)
Carmean ~ dunif(0,100)
Cwmean ~ dunif(0.,0.1)
Cmmean ~ dunif(0.,0.1)
})
WLa <- 400
WLb <- 2500
Delta_WL <- 20
WLs <- seq(WLa,WLb,Delta_WL)
# WLs <- WLs[(WLs < 650 | WLs > 800) & (WLs > 450)]
pos <- which((WLa:WLb %in% WLs))
Nwl <- length(pos)
data.raw <- LianaHPDA::array_obs_reflectance[pos,,,,,]
data.mean <- data.raw[,2,1,3:6,1:4,1:3]
dims <- dim(data.mean)
data.minus1d <- array(data = data.mean, dim = c(dims[1:(length(dims)-2)],dims[length(dims)-1]*dims[length(dims)]))
data.2d.NA <- matrix(data.mean,nrow = Nwl)
par(mfrow = c(1,1))
matplot(WLs,data.2d.NA,type = 'l')
Data <- list(obs_reflectance = data.minus1d)
colnames(Data$obs_reflectance) <- NULL
Nspecies <- dims[2]
Nleaves <- rep(dims[3]*dims[4],Nspecies)
Constants <- list(Nwl = Nwl,
Nspecies = Nspecies,
Nleaves = Nleaves,
talf = rrtm:::p45_talf[pos],
t12 = rrtm:::p45_t12[pos],
t21 = rrtm:::p45_t21[pos],
dataspec_p5 = rrtm:::dataspec_p5[pos,1:5])
Inits <- list(Nmean = 2,
Cabmean = 40,
Carmean = 10,
Cwmean = 0.01,
Cmmean = 0.01,
Standard.Dev = 0.05)
P5model <- nimbleModel(run_prospect5,
dimensions = list(dataspec_p5 = c(Nwl,5),
talf = Nwl,
t12 = Nwl,
t21 = Nwl,
reflectance = c(Nwl,max(Nspecies),max(Nleaves))),
data = Data,
constants = Constants,
debug = FALSE,
inits = Inits)
P5model$initializeInfo()
Nchains = 2
mcmc.out <- nimbleMCMC(code = P5model,
constants = Constants,
monitors = c("Nmean","Cabmean","Carmean","Cwmean","Cmmean",
"Standard.Dev",
"nu_species_N","nu_species_Cab","nu_species_Car","nu_species_Cw","nu_species_Cm",
"nu_leaf_N","nu_leaf_Cab","nu_leaf_Car","nu_leaf_Cw","nu_leaf_Cm"),
data = Data,
inits = Inits,
nburnin = 2000,
nchains = Nchains,
niter = 4000,
thin = 10,
summary = TRUE,
WAIC = TRUE,
samplesAsCodaMCMC = TRUE)
# system2("rsync",paste("-avz","hpc:/data/gent/vo/000/gvo00074/felicien/R/LianaHPDA/outputs/MCMC.multiplespecies.RDS","./outputs/"))
# mcmc.out <- readRDS("./outputs/MCMC.multiplespecies.RDS")
MCMCsamples <- mcmc.out$samples
param <- MCMCsamples[,]
Nsimu <- min(1000,nrow(MCMCsamples[[1]]))
pos.simu <- sample(1:nrow(MCMCsamples[[1]]),Nsimu)
param_all <- do.call(rbind,lapply(1:Nchains,function(i) MCMCsamples[[i]][pos.simu,]))[sample(1:(Nchains*Nsimu),Nsimu),]
plot(param[,c("Nmean","Cabmean","Carmean","Cwmean","Cmmean")])
plot(param[,"nu_species_N[4]"])
plot(param[,"nu_leaf_N[2, 2]"])
hist(as.vector(as.matrix(param[,c("Nmean")])))
hist(as.vector(as.matrix(param[,which(grepl("nu_species_N",colnames(param$chain1)))])))
hist(as.vector(as.matrix(param[,which(grepl("nu_leaf_N",colnames(param$chain1)))])))
hist(as.vector(as.matrix(param[,c("Nmean")])))
array_mod_reflectance <- array(data = NA,c(dim(data.minus1d),Nsimu))
all_N <- all_Cab <- all_Car <- all_Cw <- all_Cm <-
array(data = NA, c(Nspecies,max(Nleaves),Nsimu))
species_effect_N <- species_effect_Cab <- species_effect_Car <-
species_effect_Cw <- species_effect_Cm <-
array(data = NA, dim = c(Nspecies,Nsimu))
leaf_effect_N <- leaf_effect_Cab <- leaf_effect_Car <-
leaf_effect_Cm <- leaf_effect_Cw <- array(data = NA, dim = c(Nspecies,max(Nleaves),Nsimu))
RMSE <- array(data = NA, dim = c(Nspecies,max(Nleaves)))
for (ispecies in seq(1,Nspecies)){
print(ispecies)
species_effect_N[ispecies,] <- param_all[,paste0("nu_species_N[",ispecies,"]")]
species_effect_Cab[ispecies,] <- param_all[,paste0("nu_species_Cab[",ispecies,"]")]
species_effect_Car[ispecies,] <- param_all[,paste0("nu_species_Car[",ispecies,"]")]
species_effect_Cw[ispecies,] <- param_all[,paste0("nu_species_Cw[",ispecies,"]")]
species_effect_Cm[ispecies,] <- param_all[,paste0("nu_species_Cm[",ispecies,"]")]
for (ileaf in seq(1,Nleaves[ispecies])){
leaf_effect_N[ispecies,ileaf,] <- param_all[,paste0("nu_leaf_N[",ispecies,", ",ileaf,"]")]
leaf_effect_Cab[ispecies,ileaf,] <- param_all[,paste0("nu_leaf_Cab[",ispecies,", ",ileaf,"]")]
leaf_effect_Car[ispecies,ileaf,] <- param_all[,paste0("nu_leaf_Car[",ispecies,", ",ileaf,"]")]
leaf_effect_Cm[ispecies,ileaf,] <- param_all[,paste0("nu_leaf_Cm[",ispecies,", ",ileaf,"]")]
leaf_effect_Cw[ispecies,ileaf,] <- param_all[,paste0("nu_leaf_Cw[",ispecies,", ",ileaf,"]")]
cN <- param_all[,"Nmean"] + species_effect_N[ispecies,] + leaf_effect_N[ispecies,ileaf,]
cCab <- param_all[,"Cabmean"] + species_effect_Cab[ispecies,] + leaf_effect_Cab[ispecies,ileaf,]
cCar <- param_all[,"Carmean"] + species_effect_Car[ispecies,] + leaf_effect_Car[ispecies,ileaf,]
cCw <- param_all[,"Cwmean"] + species_effect_Cw[ispecies,] + leaf_effect_Cw[ispecies,ileaf,]
cCm <- param_all[,"Cmmean"] + species_effect_Cm[ispecies,] + leaf_effect_Cm[ispecies,ileaf,]
all_N[ispecies,ileaf,] <- cN
all_Cab[ispecies,ileaf,] <- cCab
all_Car[ispecies,ileaf,] <- cCar
all_Cw[ispecies,ileaf,] <- cCw
all_Cm[ispecies,ileaf,] <- cCm
tmp <- matrix(unlist(lapply(1:Nsimu,function(isimu){
rrtm::prospect5(N = cN[isimu],
Cab = cCab[isimu],
Car = cCar[isimu],
Cbrown = 0,
Cw = cCw[isimu],
Cm = cCm[isimu])[["reflectance"]][pos]})),ncol = Nsimu)
array_mod_reflectance[,ispecies,ileaf,] <- tmp
X <- apply(tmp,c(1),mean)
Y <- Data$obs_reflectance[,ispecies,ileaf]
LM <- lm(data.frame(x = X,y = Y),formula = y ~ x)
RMSE[ispecies,ileaf] <- sqrt(c(crossprod(LM$residuals))/length(LM$residuals))
# ispecies = 2; ileaf = 8
# matplot(WLs,array_mod_reflectance[,ispecies,ileaf,],type = 'l')
# lines(WLs,data.minus1d[,ispecies,ileaf], col = "red",lwd = 2)
}
}
all_parameters <- bind_rows(list(melt(all_N) %>% mutate(param = "N"),
melt(all_Cab) %>% mutate(param = "Cab"),
melt(all_Car) %>% mutate(param = "Car"),
melt(all_Cw) %>% mutate(param = "Cw"),
melt(all_Cm) %>% mutate(param = "Cm"))) %>% filter(!is.na(value)) %>% rename(species = Var1,
leaf = Var2,
simu = Var3)
ggplot(data = all_parameters) +
geom_density(aes(x = value, fill = as.factor(species)), alpha = 0.4) +
facet_wrap(~ param, scales = "free") +
theme_bw()
Mean_effects <- bind_rows(list(data.frame(param = "N",value = as.vector(as.matrix(param[,"Nmean"]))),
data.frame(param = "Cab",value = as.vector(as.matrix(param[,"Cabmean"]))),
data.frame(param = "Car",value = as.vector(as.matrix(param[,"Carmean"]))),
data.frame(param = "Cw",value = as.vector(as.matrix(param[,"Cwmean"]))),
data.frame(param = "Cm",value = as.vector(as.matrix(param[,"Cmmean"])))))
ggplot(data = Mean_effects) +
geom_density(aes(x = value, fill = as.factor(param)), alpha = 0.4) +
facet_wrap(~ param, scales = "free") +
theme_bw()
all_species_effects <- bind_rows(list(melt(species_effect_N) %>% mutate(param = "N"),
melt(species_effect_Cab) %>% mutate(param = "Cab"),
melt(species_effect_Car) %>% mutate(param = "Car"),
melt(species_effect_Cm) %>% mutate(param = "Cm"),
melt(species_effect_Cw) %>% mutate(param = "Cw"))) %>% filter(!is.na(value)) %>% rename(species = Var1,
simu = Var2)
ggplot(data = all_species_effects) +
geom_density(aes(x = value, fill = as.factor(species)), alpha = 0.4) +
facet_wrap(~ param, scales = "free") +
theme_bw()
all_leaves_effects <- bind_rows(list(melt(leaf_effect_N) %>% mutate(param = "N"),
melt(leaf_effect_Cab) %>% mutate(param = "Cab"),
melt(leaf_effect_Car) %>% mutate(param = "Car"),
melt(leaf_effect_Cm) %>% mutate(param = "Cm"),
melt(leaf_effect_Cw) %>% mutate(param = "Cw"))) %>% filter(!is.na(value)) %>% rename(species = Var1,
leaf = Var2,
simu = Var3)
ggplot(data = all_leaves_effects) +
geom_density(aes(x = value, fill = as.factor(leaf)), alpha = 0.4) +
facet_wrap(param ~ species, scales = "free",ncol = 4) +
geom_vline(xintercept = 0) +
theme_bw()
plot(as.vector(Data$obs_reflectance[,2,]),as.vector(apply(array_mod_reflectance[,2,,],c(1,2),mean)))
abline(a = 0, b = 1, col ='red')
matplot(WLs,matrix(Data$obs_reflectance[,3,],nrow = Nwl),type = 'l', col = "black")
matlines(WLs,matrix(apply(array_mod_reflectance[,3,,],c(1,2),mean),nrow = Nwl), col = "red")
X <- as.vector(apply(array_mod_reflectance[,,,],c(1,2,3),mean,na.rm = TRUE))
Y <- as.vector(Data$obs_reflectance[,,])
plot(X,Y)
abline(a = 0, b = 1, col ='red')
LM <- lm(data.frame(x = X,y = Y),formula = y ~ x)
summary(LM)
sqrt(c(crossprod(LM$residuals))/length(LM$residuals))
par(mfrow = c(1,2))
matplot(WLs,data.2d.NA,type = 'l',col = "black")
matlines(WLs,Data$obs_reflectance[,3,],type = 'l',col = "red")
matplot(WLs,matrix(apply(array_mod_reflectance,c(1,2,3),mean),nrow = Nwl),type = 'l',col = "black")
matlines(WLs,apply(array_mod_reflectance[,3,,],c(1,2),mean,na.rm = TRUE),type = 'l',col = "red")
par(mfrow = c(1,2))
matplot(WLs,data.2d.NA,type = 'l')
matplot(WLs,matrix(apply(array_mod_reflectance,c(1,2,3),mean),nrow = Nwl),type = 'l')
df.merged <- bind_rows(list(melt(Data$obs_reflectance) %>% mutate(type = 'obs'),
melt(apply(array_mod_reflectance,c(1,2,3),mean,na.rm = TRUE)) %>% mutate(type = 'mod'))) %>%
pivot_wider(names_from = "type",
values_from = "value")
ggplot(data = df.merged,
aes(x = mod,y = obs,group = Var1, color = Var1)) +
geom_point(alpha = 0.4, size = 0.1) +
stat_smooth(se = FALSE,method = "lm", size = 0.1) +
theme_bw()
par(mfrow=c(1,1))
df.r2 <- df.merged %>% group_by(Var1) %>% summarise(r2 = summary(lm(formula = obs ~ mod))[["r.squared"]])
plot(WLs,df.r2$r2)
abline(h = c(0.5,0.8,0.9), col = 'red')
ggplot(data = df.merged %>% filter(Var1 %in% (df.r2 %>% filter(r2 < 0.8) %>% pull(Var1))),
aes(x = mod,y = obs,group = Var1, color = as.factor(Var1))) +
geom_point() +
stat_smooth(se = FALSE,method = "lm") +
theme_bw()
print(WLs[df.r2 %>% filter(r2 < 0.8) %>% pull(Var1)])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.