rm(list = ls())
library(nimble)
library(igraph)
library(coda)
library(dplyr)
library(tidyr)
library(ggplot2)
library(LianaHPDA)
library(reshape2)
e1_approx <- nimbleFunction(
run = function(x = double(1)) {
returnType(double(1))
A <- log((0.56146 / x + 0.65) * (1 + x))
B <- x^4 * exp(7.7 * x) * (2 + x)^3.7
return((A^-7.7 + B)^-0.13)
})
NIMprospect5 <- nimbleFunction(
run = function(N = double(0),Cab = double(0),Car = double(0), Cw = double(0), Cm = double(0),
dataspec_p5 = double(2),talf = double(1),t12 = double(1),t21 = double(1), Nwl = double(0)) {
cc <- matrix(NA,nrow = 5,ncol = 1)
k <- numeric(length = Nwl)
Cbrown <- 0
cc[1,1] <- Cab / N
cc[2,1] <- Car / N
cc[3,1] <- Cbrown / N
cc[4,1] <- Cw / N
cc[5,1] <- Cm / N
k[] <- dataspec_p5[,] %*% cc[,]
trans <- (1 - k)*exp(-k) + k^2 *e1_approx(k)
trans[trans < 0] <- 0
ralf <- 1 - talf
r12 <- 1 - t12
r21 <- 1 - t21
denom <- 1 - (r21 ^ 2) * (trans ^ 2)
Ta <- talf * trans * t21 / denom
Ra <- ralf + r21 * trans * Ta
tt <- t12 * trans * t21 / denom
rr <- r12 + r21 * trans * tt
gt1 <- rr + tt >= 1
tgt1 <- tt[gt1]
Tsub <- 0*tt
Rsub <- 0*tt
r <- 0*tt
t <- 0*tt
Tsub[gt1] <- tgt1 / (tgt1 + (1 - tgt1) * (N - 1))
Rsub[gt1] <- 1 - Tsub[gt1]
inf <- rr == 0 | tt == 0
Tsub[inf] <- 0
Rsub[inf] <- 0
r <- rr[!gt1 & !inf]
t <- tt[!gt1 & !inf]
D <- sqrt((1 + r + t) * (1 + r - t) * (1 - r + t) * (1 - r - t))
r2 <- r ^ 2
t2 <- t ^ 2
va <- (1 + r2 - t2 + D) / (2 * r)
vb <- (1 - r2 + t2 + D) / (2 * t)
vbNN <- vb ^ (N - 1)
vbNN2 <- vbNN ^ 2
va2 <- va ^ 2
denomx <- va2 * vbNN2 - 1
Rsub[!gt1 & !inf] <- va * (vbNN2 - 1) / denomx
Tsub[!gt1 & !inf] <- vbNN * (va2 - 1) / denomx
denomy <- 1 - Rsub * rr
reflectance <- Ra + Ta * Rsub * tt / denomy
returnType(double(1))
if (N < 1.1 | Car < 0 | Cab < 0 | Cm <= 0 | Cw <0) {
return(-9999*(reflectance**0))
} else{
return(reflectance)
}
})
run_prospect5 <- nimbleCode({
for (ileaf in seq(1,Nleaves)){
nu_leaf_N[ileaf] ~ dnorm(0, sd = sd_leaf_N)
nu_leaf_Cab[ileaf] ~ dnorm(0, sd = sd_leaf_Cab)
nu_leaf_Car[ileaf] ~ dnorm(0, sd = sd_leaf_Car)
nu_leaf_Cw[ileaf] ~ dnorm(0, sd = sd_leaf_Cw)
nu_leaf_Cm[ileaf] ~ dnorm(0, sd = sd_leaf_Cm)
reflectance[1:Nwl,ileaf] <- NIMprospect5(Nmean + nu_leaf_N[ileaf],
Cabmean + nu_leaf_Cab[ileaf],
Carmean + nu_leaf_Car[ileaf],
Cwmean + nu_leaf_Cw[ileaf],
Cmmean + nu_leaf_Cm[ileaf],
dataspec_p5[,], talf[],t12[],t21[], Nwl)
for (j in 1:Nwl){
obs_reflectance[j,ileaf] ~ dnorm(reflectance[j,ileaf], sd = max(0,Standard.Dev))
}
}
Standard.Dev ~ dunif(0,1)
Nmean ~ dunif(1.1,5)
Cabmean ~ dunif(0,100)
Carmean ~ dunif(0,50)
Cwmean ~ dunif(0.,0.1)
Cmmean ~ dunif(0.,0.1)
sd_leaf_N ~ dunif(0.0,0.5)
sd_leaf_Cab ~ dunif(0.,30)
sd_leaf_Car ~ dunif(0.,10)
sd_leaf_Cw ~ dunif(0.,0.02)
sd_leaf_Cm ~ dunif(0.,0.02)
})
WLa <- 400
WLb <- 2500
Delta_WL <- 20
WLs <- seq(WLa,WLb,Delta_WL)
WLs <- WLs[(WLs > 450 & WLs < 680) | WLs > 800]
pos <- which((WLa:WLb %in% WLs))
Nwl <- length(pos)
data.raw <- LianaHPDA::array_obs_reflectance[pos,,,,,]
data.mean <- data.raw[,1,1,1,,]
dims <- dim(data.mean)
data.2d <- matrix(data = data.mean,nrow = dims[1])
data.2d.NA <- data.2d[,!is.na(data.2d[1,])]
matplot(WLs,data.2d.NA,type = 'l')
Data <- list(obs_reflectance = data.2d.NA)
colnames(Data$obs_reflectance) <- NULL
Nleaves <- ncol(data.2d.NA)
Constants <- list(Nwl = Nwl,
Nleaves = Nleaves,
talf = rrtm:::p45_talf[pos],
t12 = rrtm:::p45_t12[pos],
t21 = rrtm:::p45_t21[pos],
dataspec_p5 = rrtm:::dataspec_p5[pos,1:5])
Inits <- list(Nmean = 2,
Cabmean = 40,
Carmean = 10,
Cwmean = 0.01,
Cmmean = 0.01,
Standard.Dev = 0.05)
P5model <- nimbleModel(run_prospect5,
dimensions = list(dataspec_p5 = c(Nwl,5),
talf = Nwl,
t12 = Nwl,
t21 = Nwl,
reflectance = c(Nwl,Nleaves)),
data = Data,
constants = Constants,
debug = FALSE,
inits = Inits)
P5model$initializeInfo()
Nchains = 2
mcmc.out <- nimbleMCMC(code = P5model,
constants = Constants,
monitors = c("Nmean","Cabmean","Carmean","Cwmean","Cmmean",
"Standard.Dev",
"nu_leaf_N","nu_leaf_Cab","nu_leaf_Car","nu_leaf_Cw","nu_leaf_Cm",
"sd_leaf_N","sd_leaf_Cab","sd_leaf_Car","sd_leaf_Cw","sd_leaf_Cm"),
data = Data,
inits = Inits,
nburnin = 50000,
nchains = Nchains,
niter = 100000,
thin = 50,
summary = TRUE,
WAIC = TRUE,
samplesAsCodaMCMC = TRUE)
MCMCsamples <- mcmc.out$samples
param <- MCMCsamples[,]
Nsimu <- min(1000,nrow(MCMCsamples))
pos.simu <- sample(1:nrow(MCMCsamples[[1]]),Nsimu)
param_all <- do.call(rbind,lapply(1:Nchains,function(i) MCMCsamples[[i]][pos.simu,]))[sample(1:(Nchains*Nsimu),Nsimu),]
param.names <- colnames(param_all)
plot(param[,c("Nmean","Cabmean","Cwmean","Cmmean")])
plot(param[,"nu_leaf_Cab[1]"])
hist(as.vector(as.matrix(param[,which(grepl("nu_leaf_Cab",colnames(param$chain1)))[1:10]])))
array_mod_reflectance <- array(data = NA,c(dim(data.2d.NA),Nsimu))
all_N <- all_Cab <- all_Car <- all_Cw <- all_Cm <- array(data = NA, c(Nleaves,Nsimu))
for (ileaf in seq(1,Nleaves)){
print(ileaf)
cN <- param_all[,"Nmean"] + param_all[,paste0("nu_leaf_N[",ileaf,"]")]
cCab <- param_all[,"Cabmean"] + param_all[,paste0("nu_leaf_Cab[",ileaf,"]")]
cCar <- param_all[,"Carmean"] + param_all[,paste0("nu_leaf_Car[",ileaf,"]")]
cCw <- param_all[,"Cwmean"] + param_all[,paste0("nu_leaf_Cw[",ileaf,"]")]
cCm <- param_all[,"Cmmean"] + param_all[,paste0("nu_leaf_Cm[",ileaf,"]")]
all_N[ileaf,] <- cN
all_Cab[ileaf,] <- cCab
all_Car[ileaf,] <- cCar
all_Cw[ileaf,] <- cCw
all_Cm[ileaf,] <- cCm
tmp <- matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = cN[ileaf],
Cab = cCab[ileaf],
Car = cCar[ileaf],
Cbrown = 0,
Cw = cCw[ileaf],
Cm = cCm[ileaf])[["reflectance"]][pos]})),ncol = Nsimu)
array_mod_reflectance[,ileaf,] <- tmp
}
all_parameters <- bind_rows(list(melt(all_N) %>% mutate(param = "N"),
melt(all_Cab) %>% mutate(param = "Cab"),
melt(all_Car) %>% mutate(param = "Car"),
melt(all_Cw) %>% mutate(param = "Cw"),
melt(all_Cm) %>% mutate(param = "Cm"))) %>% filter(!is.na(value)) %>% rename(leaf = Var1,
simu = Var2)
ggplot(data = all_parameters) +
geom_density(aes(x = value), alpha = 0.4) +
facet_wrap(~ param, scales = "free") +
theme_bw()
X <- as.vector(apply(array_mod_reflectance,c(1,2),mean,na.rm = TRUE))
Y <- as.vector(data.2d.NA)
plot(X,Y)
abline(a = 0, b = 1, col ='red')
LM <- lm(data.frame(x = X,y = Y),formula = y ~ x)
summary(LM)
sqrt(c(crossprod(LM$residuals))/length(LM$residuals))
par(mfrow = c(1,2))
matplot(WLs,data.2d.NA,type = 'l')
matplot(WLs,apply(array_mod_reflectance,c(1,2),mean,na.rm = TRUE),type = 'l')
df.merged <- bind_rows(list(melt(data.2d.NA) %>% mutate(type = 'obs'),
melt(apply(array_mod_reflectance,c(1,2),mean,na.rm = TRUE)) %>% mutate(type = 'mod'))) %>%
pivot_wider(names_from = "type",
values_from = "value")
ggplot(data = df.merged,
aes(x = mod,y = obs,group = Var1)) +
geom_point() +
stat_smooth(se = FALSE,method = "lm") +
theme_bw()
par(mfrow=c(1,1))
df.r2 <- df.merged %>% group_by(Var1) %>% summarise(r2 = summary(lm(formula = obs ~ mod))[["r.squared"]])
plot(WLs,df.r2$r2)
ggplot(data = df.merged %>% filter(Var1 %in% (df.r2 %>% filter(r2 < 0.8) %>% pull(Var1))),
aes(x = mod,y = obs,group = Var1)) +
geom_point() +
stat_smooth(se = FALSE,method = "lm") +
theme_bw()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.