## ----load_packages, echo = F, include=F----------------------------------
library(BDAepimodel)
library(coda)
library(Rcpp)
## ----SIR_sim, warning=F, cache = F---------------------------------------
library(BDAepimodel)
library(Rcpp)
set.seed(81786)
obstimes <- seq(1, 78, by=7)
params <- c(beta = 0.0004, mu = 1/7, rho = 0.3, S0 = 0.948, I0 = 0.002, R0 = 0.05)
init_config <- c(1222,3,25)
epidemic <- simulateSIR(obstimes, params, init_config)
epidemic <- epidemic[epidemic[,1]!=0,]
epidemic <- rbind(c(1,0,0,init_config), epidemic, c(obstimes[obstimes>max(epidemic[,1])][1], 0, 0,epidemic[nrow(epidemic),4:6]))
obstimes <- obstimes[obstimes < max(epidemic[,1])]
dat <- cbind(obstimes, rbinom(length(obstimes), epidemic[findInterval(obstimes, epidemic[,1]),5], params["rho"]))
colnames(dat) <- c("time", "I")
plot(epidemic[,1], epidemic[,5], "l")
points(dat)
## ----initvals, echo = FALSE, results = 'asis'----------------------------
library(knitr)
inits <- t(data.frame(beta = c(3.6, 3.8, 4, 4, 4.1, 4.2, 4.2, 6, 8.5) /
c(1400, 1300, 1250, 1200, 1100, 900, 500, 300, 150) /
c(7.25, 7.25, 7.5, 7.5, 7.75, 7.75, 8, 18, 25),
mu = 1 / c(7.25, 7.25, 7.5, 7.5, 7.75, 7.75, 8, 15, 50)))
colnames(inits) = paste("N = ",c(1400, 1300, 1250, 1200, 1100, 900, 500, 300, 150), sep = "")
kable(inits, caption = "Initial rate parameter values.")
## ----SIR_kernel, warning = F, cache=F------------------------------------
# helper function for computing the sufficient statistics for the SIR model rate parameters
Rcpp::cppFunction("Rcpp::NumericVector getSuffStats(const Rcpp::NumericMatrix& pop_mat, const int ind_final_config) {
// initialize sufficient statistics
int num_inf = 0; // number of infection events
int num_rec = 0; // number of recovery events
double beta_suff = 0; // integrated hazard for the infectivity
double mu_suff = 0; // integrated hazard for the recovery
// initialize times
double cur_time = 0; // current time
double next_time = pop_mat(0,0); // time of the first event
double dt = 0; // time increment
// compute the sufficient statistics - loop through the pop_mat matrix until
// reaching the row for the final observation time
for(int j = 0; j < ind_final_config - 1; ++j) {
cur_time = next_time;
next_time = pop_mat(j+1, 0); // grab the time of the next event
dt = next_time - cur_time; // compute the time increment
beta_suff += pop_mat(j, 3) * pop_mat(j, 4) * dt; // add S*I*(t_{j+1} - t_j) to beta_suff
mu_suff += pop_mat(j, 4) * dt; // add I*(t_{j+1} - t_j) to mu_suff
// increment the count for the next event
if(pop_mat(j + 1, 2) == 1) {
num_inf += 1;
} else if(pop_mat(j + 1, 2) == 2) {
num_rec += 1;
}
}
// return the vector of sufficient statistics for the rate parameters
return Rcpp::NumericVector::create(num_inf, beta_suff, num_rec, mu_suff);
}")
gibbs_kernel <- function(epimodel) {
# get sufficient statistics
suff_stats <- getSuffStats(epimodel$pop_mat, epimodel$ind_final_config)
### update parameters
# beta ~ Gamma(0.00042 * 1250 / N, 1)
# mu ~ Gamma(0.35, 2)
# rho ~ Beta(1, 1)
proposal <- epimodel$params
proposal["beta"] <- rgamma(1, 0.00042 * (1250 / epimodel$popsize) + suff_stats[1], 1 + suff_stats[2])
proposal["mu"] <- rgamma(1, 0.35 + suff_stats[3], 2 + suff_stats[4])
proposal["rho"] <- rbeta(1, shape1 = 1 + sum(epimodel$obs_mat[,"I_observed"]), shape2 = 1 + sum(epimodel$obs_mat[,"I_augmented"] - epimodel$obs_mat[,"I_observed"]))
# update array of rate matrices
epimodel <- build_new_irms(epimodel, proposal)
# update the eigen decompositions (This function is built in)
buildEigenArray_SIR(real_eigenvals = epimodel$real_eigen_values,
imag_eigenvals = epimodel$imag_eigen_values,
eigenvecs = epimodel$eigen_vectors,
inversevecs = epimodel$inv_eigen_vectors,
irm_array = epimodel$irm,
n_real_eigs = epimodel$n_real_eigs,
initial_calc = FALSE)
# get log-likelihood of the observations under the new parameters
obs_likelihood_new <- calc_obs_likelihood(epimodel, params = proposal, log = TRUE) #### NOTE - log = TRUE
# get the new population level CTMC log-likelihood
pop_likelihood_new <- epimodel$likelihoods$pop_likelihood_cur +
suff_stats[1] * (log(proposal["beta"]) - log(epimodel$params["beta"])) +
suff_stats[3] * (log(proposal["mu"]) - log(epimodel$params["mu"])) -
suff_stats[2] * (proposal["beta"] - epimodel$params["beta"]) -
suff_stats[4] * (proposal["mu"] - epimodel$params["mu"])
# update parameters, likelihood objects, and eigen decompositions
epimodel <-
update_params(
epimodel,
params = proposal,
pop_likelihood = pop_likelihood_new,
obs_likelihood = obs_likelihood_new
)
return(epimodel)
}
## ----SIR_inference, warning=F, cache=F, messages = F---------------------
chain <- 1; popsize = 900 # both of these were varied by an external script
set.seed(52787 + chain)
# initialize the measurement process functions
r_meas_process <- function(state, meas_vars, params){
rbinom(n = nrow(state), size = state[,meas_vars], prob = params["rho"])
}
d_meas_process <- function(state, meas_vars, params, log = TRUE) {
dbinom(x = state[, "I_observed"],
size = state[, "I_augmented"],
prob = params["rho"], log = log)
}
# for setting the initial values
inits <- data.frame(popsize = c(1400, 1300, 1250, 1200, 1100, 900, 500, 300, 150),
beta = c(3.6, 3.8, 4, 4, 4.1, 4.2, 4.2, 6, 8.5) /
c(1400, 1300, 1250, 1200, 1100, 900, 500, 300, 150) /
c(7.25, 7.25, 7.5, 7.5, 7.75, 7.75, 8, 18, 25),
mu = 1 / c(7.25, 7.25, 7.5, 7.5, 7.75, 7.75, 8, 15, 50))
# initialize the epimodel object
epimodel <- init_epimodel(popsize = popsize,
states = c("S", "I", "R"),
params = c(
beta = rnorm(1, inits[inits$popsize == popsize, 2], 1e-5),
mu = rnorm(1, inits[inits$popsize == popsize, 3], 1e-4),
rho = rbeta(1,10,10),
S0 = 0.97,
I0 = 0.003,
R0 = 0.027
),
rates = c("beta * I", "mu"),
flow = matrix(c(-1, 1, 0, 0, -1, 1), ncol = 3, byrow = T),
dat = dat,
time_var = "time",
meas_vars = "I",
initdist_prior = c(100, 1, 5),
r_meas_process = r_meas_process,
d_meas_process = d_meas_process)
# initialize the model object
epimodel <- init_settings(epimodel,
niter = 10, # set to 100,000 in the paper
save_params_every = 1,
save_configs_every = 5000,
kernel = list(gibbs_kernel),
configs_to_redraw = ceiling(0.1 * popsize),
analytic_eigen = "SIR",
ecctmc_method = "unif",
52787 + chain)
# fit the model
epimodel <- fit_epimodel(epimodel, monitor = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.