#' @include class_dmDSdata.R
NULL
################################################################################
### dmDSprecision class
################################################################################
#' dmDSprecision object
#'
#' dmDSprecision extends the \code{\linkS4class{dmDSdata}} by adding the
#' precision estimates of the Dirichlet-multinomial distribution used to model
#' the feature (e.g., transcript, exon, exonic bin) counts for each gene in the
#' differential usage analysis. Result of calling the \code{\link{dmPrecision}}
#' function.
#'
#' @details Normally, in the differential analysis based on RNA-seq data, such
#' as, for example, differential gene expression, dispersion (of
#' negative-binomial model) is estimated. Here, we estimate precision of the
#' Dirichlet-multinomial model as it is more convenient computationally. To
#' obtain dispersion estimates, one can use a formula: dispersion = 1 / (1 +
#' precision).
#'
#' @return
#'
#' \itemize{ \item \code{mean_expression(x)}: Get a data frame with mean gene
#' expression. \item \code{common_precision(x), common_precision(x) <- value}:
#' Get or set common precision. \code{value} must be numeric of length 1. \item
#' \code{genewise_precision(x), genewise_precision(x) <- value}: Get a data
#' frame with gene-wise precision or set new gene-wise precision. \code{value}
#' must be a data frame with "gene_id" and "genewise_precision" columns. }
#'
#' @param x,object dmDSprecision object.
#' @param value Values that replace current attributes.
#' @param ... Other parameters that can be defined by methods using this
#' generic.
#'
#' @slot mean_expression Numeric vector of mean gene expression.
#' @slot common_precision Numeric value of estimated common precision.
#' @slot genewise_precision Numeric vector of estimated gene-wise precisions.
#' @slot design_precision Numeric matrix of the design used to estimate
#' precision.
#'
#' @examples
#' # --------------------------------------------------------------------------
#' # Create dmDSdata object
#' # --------------------------------------------------------------------------
#' ## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
#'
#' library(PasillaTranscriptExpr)
#' \donttest{
#' data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
#'
#' ## Load metadata
#' pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
#' header = TRUE, as.is = TRUE)
#'
#' ## Load counts
#' pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
#' header = TRUE, as.is = TRUE)
#'
#' ## Create a pasilla_samples data frame
#' pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
#' group = pasilla_metadata$condition)
#' levels(pasilla_samples$group)
#'
#' ## Create a dmDSdata object
#' d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
#'
#' ## Use a subset of genes, which is defined in the following file
#' gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
#'
#' d <- d[names(d) %in% gene_id_subset, ]
#'
#' # --------------------------------------------------------------------------
#' # Differential transcript usage analysis - simple two group comparison
#' # --------------------------------------------------------------------------
#'
#' ## Filtering
#' ## Check what is the minimal number of replicates per condition
#' table(samples(d)$group)
#'
#' d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
#' min_gene_expr = 10, min_feature_expr = 10)
#'
#' plotData(d)
#'
#' ## Create the design matrix
#' design_full <- model.matrix(~ group, data = samples(d))
#'
#' ## To make the analysis reproducible
#' set.seed(123)
#' ## Calculate precision
#' d <- dmPrecision(d, design = design_full)
#'
#' plotPrecision(d)
#'
#' head(mean_expression(d))
#' common_precision(d)
#' head(genewise_precision(d))
#' }
#' @author Malgorzata Nowicka
#' @seealso \code{\linkS4class{dmDSdata}}, \code{\linkS4class{dmDSfit}},
#' \code{\linkS4class{dmDStest}}
setClass("dmDSprecision",
contains = "dmDSdata",
representation(mean_expression = "numeric",
common_precision = "numeric",
genewise_precision = "numeric",
design_precision = "matrix"))
# -----------------------------------------------------------------------------
setValidity("dmDSprecision", function(object){
## Has to return TRUE when valid object!
out <- TRUE
if(length(object@mean_expression) > 0){
if(length(object@mean_expression) == length(object@counts)){
if(all(names(object@mean_expression) == names(object@counts)))
out <- TRUE
else
return(paste0("Different names of 'counts' and 'mean_expression'"))
}
else
return(paste0("Unequal length of 'counts' and 'mean_expression'"))
}
if(length(object@genewise_precision) > 0){
if(length(object@genewise_precision) == length(object@counts)){
if(all(names(object@genewise_precision) == names(object@counts)))
out <- TRUE
else
return(paste0("Different names of 'counts' and 'genewise_precision'"))
}
else
return(paste0("Unequal length of 'counts' and 'genewise_precision'"))
}
if(length(object@common_precision) > 0){
if(length(object@common_precision) == 1)
out <- TRUE
else
return(paste0("'common_precision' must be a vector of length 1'"))
}
if(nrow(object@design_precision) == ncol(object@counts)){
out <- TRUE
}else{
return(paste0("Number of rows in the design matrix must be equal
to the number of columns in counts"))
}
return(out)
})
################################################################################
### accessing methods
################################################################################
#' @rdname dmDSprecision-class
#' @param type Character indicating which design matrix should be returned.
#' Possible values \code{"precision"}, \code{"full_model"} or
#' \code{"null_model"}.
#' @export
setMethod("design", "dmDSprecision", function(object, type = "precision"){
stopifnot(type %in% c("precision", "full_model", "null_model"))
if(type == "precision")
object@design_precision
else
NULL
})
#' @rdname dmDSprecision-class
#' @export
setGeneric("mean_expression", function(x, ...)
standardGeneric("mean_expression"))
#' @rdname dmDSprecision-class
#' @export
setMethod("mean_expression", "dmDSprecision", function(x){
data.frame(gene_id = names(x@mean_expression),
mean_expression = x@mean_expression,
stringsAsFactors = FALSE, row.names = NULL)
})
#' @rdname dmDSprecision-class
#' @export
setGeneric("common_precision", function(x, ...)
standardGeneric("common_precision"))
#' @rdname dmDSprecision-class
#' @export
setMethod("common_precision", "dmDSprecision", function(x)
x@common_precision )
#' @rdname dmDSprecision-class
#' @export
setGeneric("common_precision<-", function(x, value)
standardGeneric("common_precision<-"))
#' @rdname dmDSprecision-class
#' @export
setMethod("common_precision<-", "dmDSprecision", function(x, value){
### value must be a numeric of length 1
names(value) <- NULL
return(new("dmDSprecision", mean_expression = x@mean_expression,
common_precision = value, genewise_precision = x@genewise_precision,
design_precision = x@design_precision,
counts = x@counts, samples = x@samples))
})
#' @rdname dmDSprecision-class
#' @export
setGeneric("genewise_precision", function(x, ...)
standardGeneric("genewise_precision"))
#' @rdname dmDSprecision-class
#' @export
setMethod("genewise_precision", "dmDSprecision", function(x){
data.frame(gene_id = names(x@genewise_precision),
genewise_precision = x@genewise_precision, stringsAsFactors = FALSE,
row.names = NULL)
})
#' @rdname dmDSprecision-class
#' @export
setGeneric("genewise_precision<-", function(x, value)
standardGeneric("genewise_precision<-"))
#' @rdname dmDSprecision-class
#' @export
setMethod("genewise_precision<-", "dmDSprecision", function(x, value){
# value must be a data frame with gene_id and genewise_precision
stopifnot(all(c("gene_id", "genewise_precision") %in% colnames(value)))
stopifnot(all(names(x@counts) %in% value[,"gene_id"]))
order <- match(names(x@counts), value[,"gene_id"])
return(new("dmDSprecision", mean_expression = x@mean_expression,
common_precision = x@common_precision,
genewise_precision = value[order, "genewise_precision"],
design_precision = x@design_precision,
counts = x@counts, samples = x@samples))
})
# -----------------------------------------------------------------------------
setMethod("show", "dmDSprecision", function(object){
callNextMethod(object)
cat(" design()\n")
cat(" mean_expression(), common_precision(), genewise_precision()\n")
})
################################################################################
### dmPrecision
################################################################################
#' Estimate the precision parameter in the Dirichlet-multinomial model
#'
#' Maximum likelihood estimates of the precision parameter in the
#' Dirichlet-multinomial model used for the differential exon/transcript usage
#' or QTL analysis.
#'
#' @details Normally, in the differential analysis based on RNA-seq data, such
#' as, for example, differential gene expression, dispersion (of
#' negative-binomial model) is estimated. Here, we estimate precision of the
#' Dirichlet-multinomial model as it is more convenient computationally. To
#' obtain dispersion estimates, one can use a formula: dispersion = 1 / (1 +
#' precision).
#'
#' @param x \code{\linkS4class{dmDSdata}} or \code{\linkS4class{dmSQTLdata}}
#' object.
#' @param ... Other parameters that can be defined by methods using this
#' generic.
#' @export
setGeneric("dmPrecision", function(x, ...) standardGeneric("dmPrecision"))
# -----------------------------------------------------------------------------
#' @details Parameters that are used in the precision (dispersion = 1 / (1 +
#' precision)) estimation start with prefix \code{prec_}. Those that are used
#' for the proportion estimation in each group when the shortcut fitting
#' \code{one_way = TRUE} can be used start with \code{prop_}, and those that
#' are used in the regression framework start with \code{coef_}.
#'
#' There are two optimization methods implemented within dmPrecision:
#' \code{"optimize"} for the common precision and \code{"grid"} for the
#' gene-wise precision.
#'
#' Only part of the precision parameters in dmPrecision have an influence on
#' a given optimization method. Here is a list of such active parameters:
#'
#' \code{"optimize"}:
#'
#' \itemize{ \item \code{prec_interval}: Passed as \code{interval}. \item
#' \code{prec_tol}: The accuracy defined as \code{tol}. }
#'
#' \code{"grid"}, which uses the grid approach from
#' \code{\link[edgeR]{estimateDisp}} in \code{\link{edgeR}}:
#'
#' \itemize{ \item \code{prec_init}, \code{prec_grid_length},
#' \code{prec_grid_range}: Parameters used to construct the search grid
#' \code{prec_init * 2^seq(from = prec_grid_range[1]}, \code{to =
#' prec_grid_range[2]}, \code{length = prec_grid_length)}. \item
#' \code{prec_moderation}: Dipsersion shrinkage is available only with
#' \code{"grid"} method. \item \code{prec_prior_df}: Used only when precision
#' shrinkage is activated. Moderated likelihood is equal to \code{loglik +
#' prec_prior_df * moderation}. Higher \code{prec_prior_df}, more shrinkage
#' toward common or trended precision is applied. \item \code{prec_span}:
#' Used only when precision moderation toward trend is activated. }
#'
#' @param design Numeric matrix defining the model that should be used when
#' estimating precision. Normally this should be a full model design used
#' also in \code{\link{dmFit}}.
#' @param mean_expression Logical. Whether to estimate the mean expression of
#' genes.
#' @param common_precision Logical. Whether to estimate the common precision.
#' @param genewise_precision Logical. Whether to estimate the gene-wise
#' precision.
#' @param prec_adjust Logical. Whether to use the Cox-Reid adjusted or
#' non-adjusted profile likelihood.
#' @param one_way Logical. Should the shortcut fitting be used when the design
#' corresponds to multiple group comparison. This is a similar approach as in
#' \code{\link{edgeR}}. If \code{TRUE} (the default), then proportions are
#' fitted per group and regression coefficients are recalculated from those
#' fits.
#' @param prec_subset Value from 0 to 1 defining the percentage of genes used in
#' common precision estimation. The default is 0.1, which uses 10% of
#' randomly selected genes to speed up the precision estimation process. Use
#' \code{set.seed} function to make the analysis reproducible. See Examples.
#' @param prec_interval Numeric vector of length 2 defining the interval of
#' possible values for the common precision.
#' @param prec_tol The desired accuracy when estimating common precision.
#' @param prec_init Initial precision. If \code{common_precision} is
#' \code{TRUE}, then \code{prec_init} is overwritten by common precision
#' estimate.
#' @param prec_grid_length Length of the search grid.
#' @param prec_grid_range Vector giving the limits of grid interval.
#' @param prec_moderation Precision moderation method. One can choose to shrink
#' the precision estimates toward the common precision (\code{"common"}) or
#' toward the (precision versus mean expression) trend (\code{"trended"})
#' @param prec_prior_df Degree of moderation (shrinkage) in case when it can not
#' be calculated automaticaly (number of genes on the upper boundary of grid
#' is smaller than 10). By default it is equal to 0.
#' @param prec_span Value from 0 to 1 defining the percentage of genes used in
#' smoothing sliding window when calculating the precision versus mean
#' expression trend.
#' @param prop_mode Optimization method used to estimate proportions. Possible
#' value \code{"constrOptim"}.
#' @param prop_tol The desired accuracy when estimating proportions.
#' @param coef_mode Optimization method used to estimate regression
#' coefficients. Possible value \code{"optim"}.
#' @param coef_tol The desired accuracy when estimating regression coefficients.
#' @param verbose Numeric. Definie the level of progress messages displayed. 0 -
#' no messages, 1 - main messages, 2 - message for every gene fitting.
#' @param add_uniform Whether to add a small fractional count to zeros,
#' (adding a uniform random variable between 0 and 0.1).
#' This option allows for the fitting of genewise precision and coefficients
#' for genes with two features having all zero for one group, or the last
#' feature having all zero for one group.
#' @param BPPARAM Parallelization method used by
#' \code{\link[BiocParallel]{bplapply}}.
#'
#' @return Returns a \code{\linkS4class{dmDSprecision}} or
#' \code{\linkS4class{dmSQTLprecision}} object.
#' @examples
#' # --------------------------------------------------------------------------
#' # Create dmDSdata object
#' # --------------------------------------------------------------------------
#' ## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
#'
#' library(PasillaTranscriptExpr)
#' \donttest{
#' data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
#'
#' ## Load metadata
#' pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
#' header = TRUE, as.is = TRUE)
#'
#' ## Load counts
#' pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
#' header = TRUE, as.is = TRUE)
#'
#' ## Create a pasilla_samples data frame
#' pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
#' group = pasilla_metadata$condition)
#' levels(pasilla_samples$group)
#'
#' ## Create a dmDSdata object
#' d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
#'
#' ## Use a subset of genes, which is defined in the following file
#' gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
#'
#' d <- d[names(d) %in% gene_id_subset, ]
#'
#' # --------------------------------------------------------------------------
#' # Differential transcript usage analysis - simple two group comparison
#' # --------------------------------------------------------------------------
#'
#' ## Filtering
#' ## Check what is the minimal number of replicates per condition
#' table(samples(d)$group)
#'
#' d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
#' min_gene_expr = 10, min_feature_expr = 10)
#'
#' plotData(d)
#'
#' ## Create the design matrix
#' design_full <- model.matrix(~ group, data = samples(d))
#'
#' ## To make the analysis reproducible
#' set.seed(123)
#' ## Calculate precision
#' d <- dmPrecision(d, design = design_full)
#'
#' plotPrecision(d)
#'
#' head(mean_expression(d))
#' common_precision(d)
#' head(genewise_precision(d))
#' }
#' @seealso \code{\link{plotPrecision}} \code{\link[edgeR]{estimateDisp}}
#' @author Malgorzata Nowicka
#' @references McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression
#' analysis of multifactor RNA-Seq experiments with respect to biological
#' variation. Nucleic Acids Research 40, 4288-4297.
#' @rdname dmPrecision
#' @importFrom limma nonEstimable
#' @importFrom stats runif
#' @export
setMethod("dmPrecision", "dmDSdata", function(x, design,
mean_expression = TRUE, common_precision = TRUE, genewise_precision = TRUE,
prec_adjust = TRUE, prec_subset = 0.1,
prec_interval = c(0, 1e+3), prec_tol = 1e+01,
prec_init = 100, prec_grid_length = 21, prec_grid_range = c(-10, 10),
prec_moderation = "trended", prec_prior_df = 0, prec_span = 0.1,
one_way = TRUE,
prop_mode = "constrOptim", prop_tol = 1e-12,
coef_mode = "optim", coef_tol = 1e-12,
verbose = 0,
add_uniform = FALSE,
BPPARAM = BiocParallel::SerialParam()){
# Check design as in edgeR
design <- as.matrix(design)
stopifnot(nrow(design) == ncol(x@counts))
ne <- limma::nonEstimable(design)
if(!is.null(ne))
stop(paste("Design matrix not of full rank.
The following coefficients not estimable:\n", paste(ne, collapse = " ")))
# Check other parameters
stopifnot(is.logical(mean_expression))
stopifnot(is.logical(common_precision))
stopifnot(is.logical(genewise_precision))
stopifnot(is.logical(prec_adjust))
stopifnot(length(prec_subset) == 1)
stopifnot(is.numeric(prec_subset) && prec_subset > 0 && prec_subset <= 1)
stopifnot(length(prec_interval) == 2)
stopifnot(prec_interval[1] < prec_interval[2])
stopifnot(length(prec_tol) == 1)
stopifnot(is.numeric(prec_tol) && prec_tol > 0)
stopifnot(length(prec_init) == 1)
stopifnot(is.numeric(prec_init))
stopifnot(prec_grid_length > 2)
stopifnot(length(prec_grid_range) == 2)
stopifnot(prec_grid_range[1] < prec_grid_range[2])
stopifnot(length(prec_moderation) == 1)
stopifnot(prec_moderation %in% c("none", "common", "trended"))
stopifnot(length(prec_prior_df) == 1)
stopifnot(is.numeric(prec_prior_df) && prec_prior_df >= 0)
stopifnot(length(prec_span) == 1)
stopifnot(is.numeric(prec_span) && prec_span > 0 && prec_span < 1)
stopifnot(is.logical(one_way))
stopifnot(length(prop_mode) == 1)
stopifnot(prop_mode %in% c("constrOptim"))
stopifnot(length(prop_tol) == 1)
stopifnot(is.numeric(prop_tol) && prop_tol > 0)
stopifnot(length(coef_mode) == 1)
stopifnot(coef_mode %in% c("optim", "nlminb", "nlm"))
stopifnot(length(coef_tol) == 1)
stopifnot(is.numeric(coef_tol) && coef_tol > 0)
stopifnot(verbose %in% 0:2)
if(mean_expression || (genewise_precision &&
prec_moderation == "trended")){
mean_expression <- dm_estimateMeanExpression(counts = x@counts,
verbose = verbose)
}else{
mean_expression <- numeric()
}
if(common_precision){
if(prec_subset < 1){
message(paste0("! Using a subset of ", prec_subset,
" genes to estimate common precision !\n"))
genes2keep <- sample(1:length(x@counts),
max(round(prec_subset * length(x@counts)), 1), replace = FALSE)
}else{
genes2keep <- 1:length(x@counts)
}
common_precision <- dmDS_estimateCommonPrecision(
counts = x@counts[genes2keep, ],
design = design, prec_adjust = prec_adjust,
prec_interval = prec_interval, prec_tol = prec_tol,
one_way = one_way,
prop_mode = prop_mode, prop_tol = prop_tol,
coef_mode = coef_mode, coef_tol = coef_tol,
verbose = verbose, BPPARAM = BPPARAM)
}else{
common_precision <- numeric()
}
if(genewise_precision){
if(length(common_precision) == 1){
message("! Using common_precision = ", round(common_precision, 4),
" as prec_init !\n")
prec_init <- common_precision
}
# add random small fractional counts to zeros
counts <- if (add_uniform) addUniform(x@counts) else x@counts
genewise_precision <- dmDS_estimateTagwisePrecision(counts = counts,
design = design, mean_expression = mean_expression,
prec_adjust = prec_adjust, prec_init = prec_init,
prec_grid_length = prec_grid_length, prec_grid_range = prec_grid_range,
prec_moderation = prec_moderation,
prec_prior_df = prec_prior_df, prec_span = prec_span,
one_way = one_way,
prop_mode = prop_mode, prop_tol = prop_tol,
coef_mode = coef_mode, coef_tol = coef_tol,
verbose = verbose, BPPARAM = BPPARAM)
}else{
genewise_precision <- numeric()
}
return(new("dmDSprecision", mean_expression = mean_expression,
common_precision = common_precision,
genewise_precision = genewise_precision,
design_precision = design,
counts = x@counts, samples = x@samples))
})
################################################################################
### plotPrecision
################################################################################
#' Precision versus mean expression plot
#'
#' @return Normally in the differential analysis based on RNA-seq data, such
#' plot has dispersion parameter plotted on the y-axis. Here, the y-axis
#' represents precision since in the Dirichlet-multinomial model this is the
#' parameter that is directly estimated. It is important to keep in mind that
#' the precision parameter (gamma0) is inverse proportional to dispersion
#' (theta): theta = 1 / (1 + gamma0). In RNA-seq data, we can typically
#' observe a trend where the dispersion decreases (here, precision increases)
#' for genes with higher mean expression.
#'
#' @param x \code{\linkS4class{dmDSprecision}} or
#' \code{\linkS4class{dmSQTLprecision}} object.
#' @param ... Other parameters that can be defined by methods using this
#' generic.
#' @export
setGeneric("plotPrecision", function(x, ...) standardGeneric("plotPrecision"))
# -----------------------------------------------------------------------------
#' @inheritParams plotData
#' @examples
#' # --------------------------------------------------------------------------
#' # Create dmDSdata object
#' # --------------------------------------------------------------------------
#' ## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
#'
#' library(PasillaTranscriptExpr)
#' \donttest{
#' data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
#'
#' ## Load metadata
#' pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
#' header = TRUE, as.is = TRUE)
#'
#' ## Load counts
#' pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
#' header = TRUE, as.is = TRUE)
#'
#' ## Create a pasilla_samples data frame
#' pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
#' group = pasilla_metadata$condition)
#' levels(pasilla_samples$group)
#'
#' ## Create a dmDSdata object
#' d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
#'
#' ## Use a subset of genes, which is defined in the following file
#' gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
#'
#' d <- d[names(d) %in% gene_id_subset, ]
#'
#' # --------------------------------------------------------------------------
#' # Differential transcript usage analysis - simple two group comparison
#' # --------------------------------------------------------------------------
#'
#' ## Filtering
#' ## Check what is the minimal number of replicates per condition
#' table(samples(d)$group)
#'
#' d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
#' min_gene_expr = 10, min_feature_expr = 10)
#'
#' plotData(d)
#'
#' ## Create the design matrix
#' design_full <- model.matrix(~ group, data = samples(d))
#'
#' ## To make the analysis reproducible
#' set.seed(123)
#' ## Calculate precision
#' d <- dmPrecision(d, design = design_full)
#'
#' plotPrecision(d)
#'
#' head(mean_expression(d))
#' common_precision(d)
#' head(genewise_precision(d))
#' }
#' @author Malgorzata Nowicka
#' @seealso \code{\link{plotData}}, \code{\link{plotProportions}},
#' \code{\link{plotPValues}}
#'
#' @rdname plotPrecision
#' @export
setMethod("plotPrecision", "dmDSprecision", function(x){
if(!length(x@genewise_precision) == length(x@counts))
stop("Genewise precision must be estimated for each gene!")
if(!length(x@genewise_precision) == length(x@mean_expression))
stop("Mean expression must be estimated for each gene!")
if(length(x@common_precision) == 0){
common_precision <- NULL
}else{
common_precision <- x@common_precision
}
ggp <- dm_plotPrecision(genewise_precision = x@genewise_precision,
mean_expression = x@mean_expression, nr_features = elementNROWS(x@counts),
common_precision = common_precision)
return(ggp)
})
# function to add small fraction of counts to zeros
addUniform <- function(counts, uniform_max=0.1) {
counts_new <- lapply(seq_along(counts), function(g) {
expr <- counts[[g]]
zeros <- expr == 0
expr[zeros] <- runif(sum(zeros), 0, uniform_max)
expr
})
names(counts_new) <- names(counts)
MatrixList(counts_new)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.