This document describes how to use the EnrichR package. Below is a simple manual for using the package
You can do enrichment analysis for different type of annotation data (GO,KEGG,Reactome(may need reactome.db if you work with Human,PFAM and InterPro)
set.seed(1234) library(EnrichR) # To check if your the current species if supported !!! showData() #showensemble() #showplant() # Make the GO and KEGG Pathway data for your analysis # find suitable species name by using showensemble() hsa_go<-makeGOdat(species="human",keytype="SYMBOL") hsa_ko<-makeKOdat(species = "human",keytype="SYMBOL",builtin = F) # find suitable species name supported by reactome by using showAvailableRO() # if you want have RO data just run # hsa_ro<-makeROdata(species = "Homo_sapiens")
# rice_go<-makeplantann(species="Oryza sativa Japonica",ann_type = "GO") #check the species name by using showplant() # rice_ko<-makeplantann(species="Oryza sativa Japonica",ann_type = "KEGG") # rice_pfam<-makeplantann(species="Oryza sativa Japonica",ann_type = "PFAM") # rice_inter<-makeplantann(species="Oryza sativa Japonica",ann_type = "InterPro") # rice_ro<-makePlantROdat(species = "Oryza_sativa") #check the species name by using showAvailablePlants() ## MSU version GO and KEGG infromation also supported named ricego,riceko ## Zea may V2 GO and KEGG annotation data also supported named zm_v2_go and zm_v2_ko # we also collect Reactome database for plant, you can just use makePlantROdat function to get RO data.
df<-data.frame(gene=sample(unique(hsa_go$SYMBOL),2000),padj=abs(rnorm(2000,0,0.01))) rownames(df)<-df$gene res<-GE(df,GO_FILE = hsa_go,gene.cutoff = 0.01) head(res) ## Gene ontology enrichment analysis results GE.plot(resultFis =res,top=20,usePadj=F,pvalue.cutoff=0.05) ## You can use default paramters, the command above just to show if you want use pvalue as cut off value. ## Rich Factor: The proportion of numbers of genes in specific GO terms and numbers of all genes in the specific GO terms among the whole genomes. Color scale indicates significance level.
## KEGG pathway Enrichment analysis results resk<-KE(df,KO_FILE = hsa_ko,gene.cutoff = 0.05,builtin = F) head(resk) KE.plot(resultFis = resk,top=10,pvalue.cutoff = 0.05) ## Size indicates gene numbers in specific KEGG pathway
You can also get network graphic for any type of enrichment analysis result and also combine different enrichment result
richplot(res,top=20,usePadj=F)
netmap(df=df,rhs=res,top=20,pvalue.cutoff = 0.05,weightcut = 0.01,visNet = T,nodeselect=T) ## df could be the vector you used for enrichment analysis
gnet(df=df,rhs=res,top=20,pvalue.cutoff = 0.05,weightcut = 0.01,vertex.label.cex=4)
mnetmap(df=df,gores=res[1:30,],kores=resk,pvalue.cutoff = 0.05,top=50)
resgo<-getdetail(res,df); head(resgo,6); resko<-getdetail(resk,df); head(resko,6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.