rm(list=ls())
library(tidyverse)
library(haven)
library(datapasta)
# read data
df = read_dta("/Users/JuamnTellez/Dropbox/teaching/data/lapop/2004-2018 LAPOP AmericasBarometer Merge (v1.0FREE).dta")
# clean data, keep 2014 where most data available, remove non-LAC countries,
# pick relevant variables
race =
df %>%
mutate(pais = as_factor(pais)) %>%
filter(pais %in% c("Colombia",
"Mexico",
"Guatemala",
"Brazil",
"Dominican Republic")) %>%
filter(year == 2014) %>%
mutate(r_id = 1:nrow(.)) %>%
select(r_id,
pais,
q2,
sex,
etid,
ed,
q10new_14,
colorr) %>%
mutate(etid = as_factor(etid),
sex = as_factor(sex))
# save data
save(race, file = here("data", "race.rda"))
# get dictionary
make_dictionary = function(data, vars)
{
# subset to variables you want
subset = select(data, one_of(vars))
# extract labels
labels = subset %>% map_chr(~attributes(.)$label)
var_dict = tibble(original = names(subset),
labels = labels)
return(var_dict)
}
# get library
var_dict =
make_dictionary(df, vars = c("pais",
"q2",
"etid",
"ed",
"colorr",
"q10new_14",
"d5",
"sex",
"d6"))
for(ii in 1:nrow(var_dict))
{
cat(paste0("\\item ", var_dict$original[ii], ". ", var_dict$labels[ii]))
cat("\n")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.