#' @title Time-course Metabolomic Study with dataset with Internal Standards (ISs) and the corresponding data of golden standards for performance evaluation using Criterion e.
#' @description this function enables the performance assessment of
#' metabolomic data processing for time-course dataset (with internal standards but without quality control sample)
#' using five criteria, and can scan thousands of processing workflows and rank them based on their performances.
#' @param fileName Allows the user to indicate the NAME of peak table resulted from PrepareInuputFiles() (default = null).
#' @param IS Allows the user to indicate the column number(s) where the internal standard(s) locate (default = null)
#' If there is only one internal standard (IS), the column number of this IS should be listed
#' If there are multiple ISs, the column numbers of all ISs should be listed and separated using comma
#' For example, the value of argument IS that is set to “2,6,8,n” indicates that the metabolites in the 3rd, 7th, 9th, and (n+1)th columns of your input peak table should be considered to be the IS metabolites.
#' @param GS Allows the user to indicate the name of the file that contains the spike-in compounds (default = null).
#' The file should be in a .csv format, which provides the concentrations of spike-in compounds.
#' @import DiffCorr affy vsn DT
#' @import e1071 AUC impute MetNorm
#' @import ggsci timecourse multiROC dummies
#' @import ggplot2 ggord ggfortify usethis
#' @import ggrepel ggpubr sampling crmn
#' @rawNamespace import(limma, except=.__C__LargeDataObject)
#' @rawNamespace import(ropls, except=plot)
#' @importFrom grDevices dev.off png rainbow rgb colorRampPalette pdf
#' @importFrom graphics abline close.screen legend mtext par points screen split.screen symbols text title lines
#' @importFrom stats anova as.formula cor dnorm kmeans lm loess loess.control mad median model.matrix na.omit pf pnorm qnorm qt quantile rnorm runif sd var
#' @importFrom utils combn read.csv write.csv write.table
#' @usage nortimecourseisallgs(fileName, IS, GS)
#' @export nortimecourseisallgs
#' @examples
#' library(NOREVA)
#' \donttest{timec_is_data <- PrepareInuputFiles(dataformat = 1,
#' rawdata = "Timecourse_with_IS.csv")}
#' \donttest{nortimecourseisallgs(fileName = timec_is_data,
#' GS = "Timecourse_with_IS_GoldenStandard.csv", IS = "4,5")}
nortimecourseisallgs <- function(fileName, IS, GS){
cat("\n")
cat("NOREVA is Running ...","\n")
cat("\n")
cat("*************************************************************************","\n")
cat("Depending on the size of your input dataset","\n")
cat("Several mintues or hours may be needed for this assessment","\n")
cat("*************************************************************************","\n")
cat("\n")
cat("STEP 1: Prepare input file in standard formats of NOREVA", "\n")
cat("\n")
cat("STEP 2: The criteira selected by users for this assessment","\n")
cat("Criterion Ca: Reduction of Intragroup Variation", "\n")
cat("Criterion Cb: Differential Metabolic Analysis", "\n")
cat("Criterion Cc: Consistency in Marker Discovery", "\n")
cat("Criterion Cd: Classification Accuracy", "\n")
cat("Criterion Ce: Level of Correspondence Between Normalized and Reference Data", "\n")
cat("\n")
cat("NOREVA is Running ...","\n")
cat("\n")
consistency <- function(fold = 3, top = 20) {
folds <- fold
DEG <- list()
for (i in 1:folds) {
set.seed(2)
com.x <- t(test.fold[[i]][,-(1:2)])
lab.ca <- as.factor(test.fold[[i]][,2])
gnames <- rownames(com.x)
###different time points
time.grp <- lab.ca
###times is the the number of time points
times <- length(unique(lab.ca))
###A numeric vector or matrix corresponding to the sample sizes for all genes across different biological conditions, three classes in this case
size <- rep(length(which(time.grp==unique(lab.ca)[1])), nrow(com.x))
#out1 <- mb.long(fruitfly, times=12, reps=size, rep.grp = assay, time.grp = time.grp)
out1 <- mb.long(com.x, times=times, reps=size, time.grp = time.grp)
### get marker ranking
marker_ranking <- cbind(gnames, out1$HotellingT2)
DEG[[i]] <- marker_ranking[order(as.numeric(marker_ranking[,2]), decreasing=T),1]
}
names(DEG) <- LETTERS[1:folds]
top.n <-top # Extracting the top n genes.
DEG.list <- DEG
for (g in 1:length(DEG.list)) {
DEG.list[[g]] <- DEG.list[[g]][1:top.n]
}
# Calculating consistency score:
setlist <- DEG.list
return(setlist) # consistense score
}
stabel.score <- function(repeats = 20, fold = 3, top = 10) {
score <- 0
for (r in 1:repeats) {
score <- score + consistency(fold, top)
}
return(score/repeats)
}
#imputation---------------------------------------------------------------------------------
imput<-function(filter_data2,n){
matrix<-switch(
n,
t(ImputMean(filter_data2)),#
t(ImputMedian(filter_data2)),#
t(back(filter_data2)),#
t(impute.knn(as.matrix(t(filter_data2)), k = 10,rng.seed = 1024)$data)#
)
return(matrix)
}
im_nam<-c(
"MEI",
"MDI",
"HAM",
"KNN"
)
#Transformation---------------------------------------------------------------------------------
trans<-function(data,n){
matrix<-switch(
n,
Cube_root(data),
log2(data),
data
)
return(matrix)
}
t_nam<-c(
"CUT",
"LOG",
"NON"
)
#normalization for with IS---------------------------------------------------------------------------------
norm_IS<-function(train_data_nor,n){
matrix<-switch(
n,
t(SIS(train_data_nor, as.numeric(nomis_name))),#1
t(NOMIS(train_data_nor, as.numeric(nomis_name))),#2
t(CCMN(train_data_nor, as.numeric(nomis_name))),#3
t(RUVRand(train_data_nor, as.numeric(nomis_name)))#4
)
return(matrix)
}
n_norm_IS<-c(
"SIS",
"NOM",
"CCM",
"RUV"
)
norm_no <- "NON"
#-----------------------------------------------------------------
###################################################Step-2 调用数据
internal_standard <- IS
data_q <- fileName
data_q<-data_q[,-2]
data2 <- data_q[, -c(1:2)]
data4 <- data_q[, 1:2]
data2[data2 == 0] <- NA # the zero value has been replaced by NA.
#filtering-----------------------------------------------------------------------------
col_f <- apply(data2, 2, function(x) length(which(is.na(x)))/length(x))
if (length(which(col_f >0.2))==0){
data2_f <- data2
}else {
data2_f <- data2[, -which(col_f > 0.2)]
}
filter_data2 <- data2_f
aftetable<-list()
normal_data <- list()
train_data_Preprocess3 <- NULL
#for (i in as.numeric(impt)){
for (i in 1:4){
after.table <- NULL
imput_m <- try(imput(filter_data2,i))
if(class(imput_m)=="try-error")
{ next }
train_data<- t(imput_m)
#for (j in as.numeric(trsf)){
for (j in 1:3){
train_data_Transformation3<-try(trans(train_data,j))
if(class(train_data_Transformation3)=="try-error")
{ next }
train_data_Transformation3[is.infinite(data.matrix(train_data_Transformation3))]<-NA
after.table <- cbind(data4, t(train_data_Transformation3))
train_data_tr<-after.table[,-1]
sampleLabel <- as.character(after.table[, 2])
for ( k in 1:4){
#Data format:(1)Matrix: row is samples, column is metabolites.(The first column is the binary labels.)
### (2)nc is the column order of QC metabolites or IS.
is_name <- as.numeric(unlist(strsplit(as.character(internal_standard),",")))
nomis_name <- is_name
#nomis_name=c(2,3,4)###################################
train_data_Preprocess3 <-try(norm_IS(train_data_tr,k))
if(class(train_data_Preprocess3)=="try-error")
{ next }
normalized_data3 <- train_data_Preprocess3
eva.data3 <- cbind(after.table[, 1:2], t(normalized_data3))
eva.data3 <- eva.data3[, -1]
eva.data3 <- as.data.frame(eva.data3)
rownames(eva.data3) <- after.table[, 1]
colnames(eva.data3)[1] <- "Group"
eva_data3<-eva.data3
normal_data[[paste(im_nam[i], norm_no, t_nam[j], paste("[",paste(n_norm_IS[k]),"]", sep=""), sep="+")]] <- eva_data3
eva_data3 <- NULL
aftetable[[paste(im_nam[i],t_nam[j],n_norm_IS[k],sep="+")]] <- after.table
}
}
}
#length(normal_data)
nanmes_right<-names(normal_data)
save(normal_data,file="./OUTPUT-NOREVA-All.Normalized.Data.Rdata")
load("./OUTPUT-NOREVA-All.Normalized.Data.Rdata")
Fpmad<-list()
Fpurity<-list()
Fscore<-list()
Fauc<-list()
Fcmed <- list()
for (mmm in 1:length(normal_data)){
name <- nanmes_right
###Fpmad-------------------------------------------------------------------------
n_data <- as.data.frame(normal_data[mmm],col.names=NULL)
n_data <- as.matrix(n_data)
if(sum(is.na(n_data))<length(n_data)/3){
eva_data3<-as.data.frame(normal_data[mmm],col.names=NULL)
}else{next}
eva_data3_f<-eva_data3
eva_data3 <- eva_data3_f
###
pmad3N.log <- eva_data3
pmad3N <- try(PMAD(pmad3N.log))
if(class(pmad3N)=="try-error")
{ next }
Fpmad[names(normal_data[mmm])]<-mean(pmad3N)
names(after.table)[1] <- "Group"
pmad3R.log <- after.table[,-1]
pmad3R <- try(PMAD(pmad3R.log))
if(class(pmad3R)=="try-error")
{ next }
C3 <- cbind(pmad3R, pmad3N); colnames(C3) <- c("Before", "After")
cat(paste("Assessing Method" , paste(mmm,":",sep=""), name[mmm]),"\n")
cat(" Criterion Ca (reduction of intragroup variation) ...","\n")
dir.create(paste0("OUTPUT-NOREVA-Criteria.Ca"))
pdf(file=paste("./OUTPUT-NOREVA-Criteria.Ca/Criteria.Ca-",names(normal_data[mmm]),".pdf",sep=""))
#library(reshape2)
C3new <- as.data.frame(C3)
melt1C3 <- cbind(C3new, "name" = rownames(C3new))
melt2C3 <- melt(melt1C3, id.vars = "name")
colnames(melt2C3) <- c("name", "beforeafter", "value")
try(print(ggplot(melt2C3, aes(x = melt2C3$beforeafter, y = melt2C3$value, color = melt2C3$beforeafter)) +
geom_violin(width=0.5,size=1.5) +
scale_color_manual(values=c("#fbbc05","#800080")) +
geom_boxplot(color=c("#fbbc05","#800080"), size=1.5, width=0.1)+
theme_bw() +
theme(panel.grid.major =element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
axis.title.y=element_blank(),
axis.title.x=element_blank(),
legend.position="none"
)
))
dev.off()
# 2. Fpurity-------------------------------------------------------------------------
data_kmeans <- eva_data3
data_kmeans[sapply(data_kmeans, simplify = 'matrix', is.na)] <- 0
eva_data3_f<-data_kmeans
del_col <- NULL
for (m in 1:dim(eva_data3_f)[2]){
if (sum(eva_data3_f[,m]==0)==nrow(eva_data3_f)) {
del_col <- c(del_col,m)
}
}
if (is.null(del_col)){
eva_data3_f <- eva_data3_f
}else{
eva_data3_f <- eva_data3_f[,-del_col]
}
com.x <- t(eva_data3_f[,-1])
lab.ca <- as.factor(eva_data3_f[,1])
gnames <- rownames(com.x)
###different time points
time.grp <- lab.ca
###times is the the number of time points
times <- length(unique(lab.ca))
###A numeric vector or matrix corresponding to the sample sizes for all genes across different biological conditions, three classes in this case
size <- rep(length(which(time.grp==unique(lab.ca)[1])), nrow(com.x))
sink(file=paste("OUTPUT-NOREVA-Record",".txt",sep=""))
out1 <- try(mb.long(com.x, times=times, reps=size, time.grp = time.grp))
if(class(out1)=="try-error")
{ next }
marker_ranking <- cbind(gnames, out1$HotellingT2)
DEG <- marker_ranking[order(as.numeric(marker_ranking[,2]), decreasing=T),]
data_kmeans <- as.data.frame(eva_data3_f[, c("Group",DEG[(1:50),1])])
clusters <- length(unique(data_kmeans[, 1]))
obj_kmeans <- try(kmeans(data_kmeans[,-1], centers = clusters, nstart = 20,iter.max = 100))
if(class(obj_kmeans)=="try-error")
{ next }
groups <- factor(data_kmeans[, 1], levels = unique(data_kmeans[,1]))
unique.groups <- levels(groups)
cols <- 1:length(unique(data_kmeans[, 1]))
box_cols <- NULL
for (ii in 1:length(data_kmeans[, 1])) {
box_cols[ii] <- cols[match(data_kmeans[, 1][ii],unique.groups)]
}
true_label<-box_cols
pre<-obj_kmeans$cluster
tru<-true_label
tmatrix<-table(pre,tru)
label<-tru
result<-pre
accuracy<-purity(result,label)
Fpurity[names(normal_data[mmm])]<-accuracy
unique.groups <- levels(as.factor(data_kmeans[,1]))
T_number <- length(unique.groups)
cols <- rainbow(length(unique.groups))
box_cols <- c(rep(NA, length(rownames(data_kmeans))))
for (ii in 1:length(data_kmeans[, 1])) {
box_cols[ii] <- cols[match(data_kmeans[, 1][ii],unique.groups)]
}
data_kmeans <- as.data.frame(data_kmeans)
data_kmeans$Color<-box_cols
data_kmeans$T_label <- data_kmeans[, 1]
sink()
cat(" Criterion Cb (differential metabolic analysis) ...","\n")
sink(file=paste("OUTPUT-NOREVA-Record",".txt",sep=""))
dir.create(paste0("OUTPUT-NOREVA-Criteria.Cb"))
pdf(file=paste("./OUTPUT-NOREVA-Criteria.Cb/Criteria.Cb-",names(normal_data[mmm]),".pdf",sep=""))
classcolor <- NA
for (i in 1:length(unique(obj_kmeans$cluster))){
majority <- obj_kmeans$cluster[obj_kmeans$cluster==i]
majority1 <- names(majority)
majority2 <- data_kmeans[majority1,"Color"]
majority3 <- unique(majority2)[which.max(tabulate(match(majority2, unique(majority2))))]
majority4 <- as.character(majority3)
classcolor[i] <- majority4
}
try(print(autoplot(obj_kmeans,
data = data_kmeans,
frame = TRUE,shape=1)+
geom_text_repel(aes(label=data_kmeans$T_label),color=data_kmeans$Color,size=4,family="serif")+
theme(legend.position="none",panel.background = element_blank(),axis.title.x=element_text(angle=0, size=12,color="black"),axis.text.x=element_text(angle=0, size=13,color="black"),axis.title.y=element_text(size=12,color="black"),axis.text.y=element_text(size=13,color="black"),panel.border = element_rect(fill='transparent', color='black'))+
geom_point(color=data_kmeans$Color,size=3)+
#scale_fill_manual(values = c("#BC4D70", "#00B1C1", "#55A51C")) +
#scale_color_manual(values = c("#BC4D70", "#00B1C1", "#55A51C"))
scale_fill_manual(values = classcolor) +
scale_color_manual(values = classcolor)))
dev.off()
# 3. Consistency -------------------------------------------------------- #
test_data <- eva_data3
test_data[sapply(test_data, simplify = 'matrix', is.na)] <- 0
Sample<-rownames(test_data)
test_data<-cbind(Sample,test_data)
for(iii in 1:dim(test_data)[1]){
test_data$Sample_label[iii]<-strsplit(as.character(test_data$Sample),"T")[[iii]][1]
}
test_data[1:5,1:5]
Sample_labels<-unique(test_data$Sample_label)
filter_label1 <- sample(Sample_labels,round(length(Sample_labels)/3),replace = FALSE)
filter_label2<-sample(Sample_labels[-match(filter_label1,Sample_labels)],round(length(Sample_labels)/3),replace = FALSE)
filter_label3<-Sample_labels[-c(match(filter_label1,Sample_labels), match(filter_label2,Sample_labels))]
test.fold <- list()
group1<-test_data[test_data$Sample_label %in% filter_label1,]
group1$Sample_label<-NULL
test.fold[[1]] <- group1
group2<-test_data[test_data$Sample_label %in% filter_label2,]
group2$Sample_label<-NULL
test.fold[[2]] <- group2
group3<-test_data[test_data$Sample_label %in% filter_label3,]
group3$Sample_label<-NULL
test.fold[[3]] <- group3
DEG.list<-try(consistency(3, 20))
if(class(DEG.list)=="try-error")
{ next }
CW_value <- try(CWvalue(DEG.list,Y=(ncol(eva_data3)-1),n=length(DEG.list[[1]])))
if(class(CW_value)=="try-error")
{ next }
Fscore[names(normal_data[mmm])]<-CW_value
sink()
cat(" Criterion Cc (consistency in marker discovery) ...","\n")
sink(file=paste("OUTPUT-NOREVA-Record",".txt",sep=""))
dir.create(paste0("OUTPUT-NOREVA-Criteria.Cc"))
pdf(file=paste("./OUTPUT-NOREVA-Criteria.Cc/Criteria.Cc-",names(normal_data[mmm]),".pdf",sep=""))
try(print(plot(eulerr::venn(DEG.list),fills = list(fill = c("white", "white","white")),
labels = list(col = "black", font = 2),
edges = list(col = c("#800080", "#4285f4", "#fbbc05"), lwd=4),
quantities = TRUE)))
dev.off()
# -- 4. AUC value --------------------------------------------------------------------------------- #
DEG <- marker_ranking[order(as.numeric(marker_ranking[,2]), decreasing=T),]
set.seed(3)
# NB ROC PLOT will change for each new random noise component (jitter)
X_matrix <- eva_data3[,-1]
y_label <- as.factor(eva_data3[,1])
X_matrix[sapply(X_matrix, simplify = 'matrix', is.na)] <- 0
data_multiROC <- cbind(y_label, X_matrix)
data_multiROC <- cbind(data_multiROC[,-1], paste("Label_", data_multiROC[, 1], sep = ""))
colnames(data_multiROC)[ncol(data_multiROC)] <- "Label"
X_matrix <- data_multiROC
y_label <- data_multiROC[,"Label"]
x <- as.data.frame(X_matrix[, c(DEG[(1:20),1], "Label")])
y <- y_label
#cross validation
y<- as.factor(x[, length(x)])
folds <- 5
test.fold <- split(sample(1:length(y)), 1:folds) #ignore warning
for (mm in 1:5) {
test <- test.fold[[mm]]
train_df <- x[-test, ]
test_df <- x[test, ]
svmmodel <- try(svm(Label ~ ., data = train_df, probability = TRUE))
if(class(svmmodel)=="try-error")
{ next }
svm_pred <- try(predict(svmmodel, test_df,probability = TRUE))
if(class(svm_pred)=="try-error")
{ next }
svm_pred <- data.frame(attr(svm_pred, "probabilities"))
colnames(svm_pred) <- paste(colnames(svm_pred), "_pred_SVM")
true_label <- dummies::dummy(test_df$Label, sep = ".")
true_label <- data.frame(true_label)
colnames(true_label) <- gsub(".*?\\.", "", colnames(true_label))
colnames(true_label) <- paste(colnames(true_label), "_true")
final_df_2 <- cbind(true_label, svm_pred)
final_df2_t<-t(final_df_2)
final_df2_t_la<-rownames(final_df2_t)
final_df2_t_c<-as.data.frame(cbind(final_df2_t_la,final_df2_t))
if (mm==1){final_df_m<-final_df2_t_c}
else{
final_df_m<-merge(final_df_m,final_df2_t_c,by="final_df2_t_la",all =T)
}
}
final_df_m[is.na(final_df_m)]<-0
rownames(final_df_m)<-final_df_m[,1]
final_df_m_t<-as.data.frame(t(final_df_m[,-1]))
roc_res <- try(multi_roc(final_df_m_t, force_diag = T))
if(class(roc_res)=="try-error")
{ next }
plot_roc_df <- try(plot_roc_data(roc_res))
if(class(plot_roc_df)=="try-error")
{ next }
plot_roc_df_mic<-subset(plot_roc_df, plot_roc_df$Group=="Micro")
AUC_mic<-round(unique(plot_roc_df_mic$AUC),3)
Fauc[names(normal_data[mmm])]<-AUC_mic
sink()
cat(" Criterion Cd (classification accuracy) ...","\n")
#cat("\n")
dir.create(paste0("OUTPUT-NOREVA-Criteria.Cd"))
pdf(file=paste("./OUTPUT-NOREVA-Criteria.Cd/Criteria.Cd-",names(normal_data[mmm]),".pdf",sep=""))
plot(x=c(0,1),y=c(0,1),col="lightgrey",pch=16,bg="yellow",type = 'l',xlim=c(0,1),ylim=c(0,1),lwd=1,xlab="1-Specificity",ylab="Sensitivity")
lines(x=1-plot_roc_df_mic$Specificity,plot_roc_df_mic$Sensitivity,col="red",pch=16,bg="yellow",xlim=c(0,1),ylim=c(0,1),lwd=2,xlab="WEEK",ylab="STUDE")
dev.off()
# -- 5. Accuracy FC --------------------------------------------------------------------------------- #
path_1 <- GS
pre_file2_1 <- readLines(path_1, n = 2)
loc <- which.max(c(length(unlist(strsplit(pre_file2_1, ","))), length(unlist(strsplit(pre_file2_1, ";"))), length(unlist(strsplit(pre_file2_1, "\t")))))
sep_seq <- c(",", ";", "\t")
M_log_up <- read.csv(path_1,header=TRUE,sep=sep_seq[loc])
if(length(intersect(colnames(M_log_up),colnames(data_q)))<2){
stop("Criteria E cannot performed, due to without matched golden standards metabolites :\n")
}
#M_log_up <- read.csv("GS_time_series_QC_sim3.csv", header=TRUE)
bias.marker <- M_log_up
bias.marker <- M_log_up[, -1]
rownames(bias.marker) <- M_log_up[, 1]
colnames(bias.marker)[1] <- "Group"
bias.marker[sapply(bias.marker, simplify = 'matrix', is.na)] <- 0.0001
bias.marker[sapply(bias.marker, simplify = 'matrix', is.infinite)] <- 0.0001
class_sample <- names(table(bias.marker$Group))
bias.norm <- eva_data3
bias.norm[sapply(bias.norm, simplify = 'matrix', is.na)] <- 0.0001
bias.norm[sapply(bias.norm, simplify = 'matrix', is.infinite)] <- 0.0001
class_sample2 <- names(table(bias.norm$Group))
result<-NULL
#i=2
for(i in 2:(length(class_sample))){
##
c1 <- bias.marker[bias.marker$Group == class_sample[i-1], -1]
c2 <- bias.marker[bias.marker$Group == class_sample[i], -1]
c1_mean <- apply(c1, 2, mean)
c2_mean <- apply(c2, 2, mean)
true_fc <- c2_mean / c1_mean
fc_marker <- log2(true_fc) #
names(fc_marker) <- colnames(bias.marker)[-1]
##
c1_3 <- bias.norm[bias.norm$Group == class_sample2[i-1], -1]
c2_3 <- bias.norm[bias.norm$Group == class_sample2[i], -1]
c1_3_mean <- apply(c1_3, 2, mean)
c2_3_mean <- apply(c2_3, 2, mean)
if (j == 2){
fc_norm <- c2_3_mean - c1_3_mean
}else{
norm_fc <- c2_3_mean / c1_3_mean
fc_norm <- log2(norm_fc)
}
##compare_fc
mark_nor <- fc_norm[match(names(fc_marker), names(fc_norm))]
mark_true <- fc_marker
bias_logfc <- mark_nor - mark_true
if (length(unique(class_sample)) == 2){
fc_table <- cbind(mark_true, mark_nor, bias_logfc)
colnames(fc_table) <- c("Reference logFC", "Normalized logFC", paste(class_sample[i], "/", class_sample[i-1],sep=" "))
#result[[i]]<-fc_table
result<-cbind(result,fc_table[,3])
}else if(length(unique(class_sample)) > 2){
fc_table <- as.matrix(bias_logfc)
colnames(fc_table) <- paste(class_sample[i], "/", class_sample[i-1],sep=" ")
#result[[i]]<-fc_table
result<-cbind(result,fc_table)
}
}
FCmedian <- abs(median(result,na.rm=TRUE))
Fcmed[names(normal_data[mmm])]<-FCmedian
cat(" Criterion Ce (Level of Correspondence Between Normalized and Reference Data) ...","\n")
cat("\n")
dir.create(paste0("OUTPUT-NOREVA-Criteria.Ce"))
pdf(file=paste("./OUTPUT-NOREVA-Criteria.Ce/Criteria.Ce-",names(normal_data[mmm]),".pdf",sep=""))
sink(file=paste("OUTPUT-NOREVA-Record",".txt",sep=""))
cut_col<-pal_simpsons("springfield")(12)
try(boxplot(result, col = cut_col[2:(length(class_sample)+1)],
ylab = "Logarithmic Fold Change of Means",
sub = "Differences between Two Classes"))
abline(h = 0, col="black",lwd=0.5)
sink()
dev.off()
#cat(" Criterion Ce (spiked accuracy) ...","\n")
#cat("\n")
}
result<-dplyr::bind_rows("Precision"=unlist(Fpmad),"Cluster_accuracy"=unlist(Fpurity),"Reproducibility"=unlist(Fscore),"Classification"=unlist(Fauc),"Accuracy"=unlist(Fcmed),.id = "id")
result1<-t(result)
colnames(result1)<-result1["id",]
result2<-result1[-1,]
result2<-data.frame(result2,check.names=FALSE)
for(i in 1:dim(result2)[2]){result2[,i]=as.numeric(as.character(result2[,i]))}
Rank<-apply(result2, 2, function(x){rank(-x,ties.method="min",na.last = "keep")})
if(length(grep("Precision",colnames(Rank)))==1){
Rank[,"Precision"]<-rank(as.numeric(as.character(result2[,"Precision"])),ties.method="min",na.last = "keep")
}else{
Rank<-Rank
}
Rank_revision<-apply(Rank, 2, function(x){x[is.na(x)]<-nrow(Rank);return(x)})
Ranksum0<-apply(Rank_revision, 1, sum)
Rankres0<-cbind("OverallRank"=Ranksum0,Rank_revision)
zuihou0<-cbind("Rank"=Rankres0,"Value"=result2)
zuihou1<-zuihou0[order(Rankres0[,"OverallRank"],decreasing = FALSE),]
zuihou1[,1]<-rank(zuihou1[,1],ties.method="min")
zuihou2<-zuihou1
zuihou3 <- zuihou2
zuihou3 <- round(zuihou3,4)
colnames(zuihou3) <- c("Overall-Rank","Criteria.Ca-Rank","Criteria.Cb-Rank","Criteria.Cc-Rank","Criteria.Cd-Rank","Criteria.Ce-Rank","Criteria.Ca-Value","Criteria.Cb-Value","Criteria.Cc-Value","Criteria.Cd-Value","Criteria.Ce-Value")
##########picture######################################
data_color<-as.data.frame(zuihou2[,-c(1:5)])
data_color["Value.Precision"][data_color["Value.Precision"]>=0.7]<-1
data_color["Value.Precision"][data_color["Value.Precision"]<0.7&data_color["Value.Precision"]>=0.3]<-8
data_color["Value.Precision"][data_color["Value.Precision"]<0.3]<-10
data_color["Value.Cluster_accuracy"][data_color["Value.Cluster_accuracy"]>=0.8]<-10
data_color["Value.Cluster_accuracy"][data_color["Value.Cluster_accuracy"]<0.8&data_color["Value.Cluster_accuracy"]>=0.5]<-8
data_color["Value.Cluster_accuracy"][data_color["Value.Cluster_accuracy"]<0.5]<-1
data_color["Value.Reproducibility"][data_color["Value.Reproducibility"]>=0.3]<-10
data_color["Value.Reproducibility"][data_color["Value.Reproducibility"]<0.3&data_color["Value.Reproducibility"]>=0.15]<-8
data_color["Value.Reproducibility"][data_color["Value.Reproducibility"]<0.15]<-1
data_color["Value.Classification"][data_color["Value.Classification"]>=0.9]<-10
data_color["Value.Classification"][data_color["Value.Classification"]<0.9&data_color["Value.Classification"]>=0.7]<-8
data_color["Value.Classification"][data_color["Value.Classification"]<0.7]<-1
data_color_m<-as.data.frame(data_color)
Ranksum_color<-apply(data_color_m, 1, sum)
data_color_m01<-cbind( "rank_color"=Ranksum_color,data_color_m)
data_color_m02<-data_color_m01[order(data_color_m01[,"rank_color"],decreasing =T),]
data_color_m<-data_color_m02
row<-rownames(data_color_m)
nfina<-nchar(row[1])
nstart<-nchar(row[1])-6
result <- substring(row, nstart,nfina)
data_heat<-data_color_m[,-1]
colnames(data_heat) <- c("Criterion Ca: Reduction of Intragroup Variation","Criterion Cb: Differential Metabolic Analysis","Criterion Cc: Consistency in Marker Discovery","Criterion Cd: Classification Accuracy","Criterion Ce: Level of Correspondence Between Normalized and Reference Data")
rank_result <- zuihou3[match(row.names(data_heat),row.names(zuihou3)),]
rank_result[,1] <- 1:nrow(rank_result)
write.csv(rank_result,file = "./OUTPUT-NOREVA-Overall.Ranking.Data.csv")
cat("\n")
cat("*************************************************************************","\n")
cat("Congratulations! Assessment Successfully Completed!","\n")
cat("Thanks for Using NOREVA. Wish to See You Soon ...","\n")
cat("*************************************************************************","\n")
cat("\n")
#return(rank_result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.