#' Function to fit rforest to a data.frame or an expressionSet
#'
#' Random forest models are fitted for each row in data using package randomForest
#'
#' @param data \code{ExpressionSet} or data.frame with samples as columns and observations as rows could be an ExpressionSet(modif!)
#' @param vars_df data.frame with sampes as rows and variables as columns
#' @param cores cores in case of parallelization (no windows)
#' @param seed set a see, for reproducibility
#' @param maxnodes maximum number of terminal nodes trees in the forest can have
#' @param ntree number of trees to grow
#' @param df degrees of freedom to apply to model
#' @param verbose logical to verbose (comment) the steps of the function, default(FALSE)
fit.rforest <- function(data=data_m,
vars_df = vars_df,
seed = NULL,
maxnodes = 15L,
ntree = 2000,
cores = 1L,
verbose = FALSE,
...)
{
fmodel <- function(y, vars_df, probe)
{
if(verbose) print(paste("Analyzing probe var ", probe))
# Prepare data whith the corresponding outcome:
data <- data.frame(cbind(y = y, vars_df))
data <- data[complete.cases(data),]
colnames(data) <- c("y", colnames(vars_df))
xnames <- colnames(vars_df)
# Best model
selrf <- bestRF(xdata = data[,-1], Y = data[,1], ntree = ntree ,vars.drop.frac = 0.2,
verbose = verbose)
formula<-as.formula(paste0("y ~ ", selrf))
mod <- try(randomForest(formula, data = data, ntree = ntree),silent=T)
# Get model performance
if(class(mod)[1] == "try-error" ){
vars <- NA
vars_n <- NA
cor2 <- NA
p <- NA
aic <- NA
} else {
vars = names(mod$importance[order(mod$importance[,1], decreasing = TRUE),1])
vars_n = try(as.integer(sum(!is.na(vars))), TRUE)
y_hat <- mod$predicted
ct <- cor.test(y_hat, data$y, use = "pairwise.complete.obs")
cor2 <- ifelse(vars_n == 0, NA, try(round((ct$estimate)^2,4), TRUE))
p <- ifelse(vars_n == 0, NA, try((ct$p.value)^2, TRUE))
aic <- NA #potser podr?em retornar oob.err
gc(reset = TRUE)
}
# Data frame of the results:
taula <- try(data.frame(cbind(probe = probe, vars_n = vars_n, aic =aic, Cor2 = cor2, p = p), stringsAsFactors = FALSE), TRUE)
result <- try(list(table = taula, selected_vars = vars, final_formula = NA), TRUE)
result
}
if(cores>1){
results <- try(mcmapply(function(y, ny) fmodel(y = y, vars_df = vars_df, probe = ny),
y = apply(data, 1, list),
ny = rownames(data),
SIMPLIFY = FALSE, mc.cores = cores), TRUE)
} else {
results <- try(mapply(function(y, ny) fmodel(y = y, vars_df = vars_df, probe = ny),
y = apply(data, 1, list),
ny = rownames(data),
SIMPLIFY = FALSE), TRUE)
}
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.